Автоматический телеграфный ключ на 3 х микросхемах. Как самому сделать телеграфный ключ для азбуки морзе
Данный электронный телеграфный ключ изготовлен с использованием всего двух простых микросхем К155ЛА3 и К155ТМ2. Принципиальная схема очень проста.
На элементах DD1.4 и DD1.1 собран тактовый генератор, частоту которого можно регулировать переменным резистором R1. На элементе DD1.3 выполнен узел запуска генератора. Триггер DD2.1 формирует «точки», DD2.2 – «двойные точки».
Когда манипулятор из среднего положения переводят в положение «Точки», на вывод 9 элемента DD1.3 поступает логический «0». При этом на входы элемента DD1.4 приходит логическая «1», и тактовый генератор начинает формировать прямоугольный импульс.
На инверсном выходе триггера DD2.1 сразу появляется низкий логический уровень, который через диод VD1 подается на узел запуска генератора. Это позволяет формировать «точки» одинаковой длительности независимо от того, когда манипулятор был возвращен в исходное состояние. Импульсы с прямого выхода триггера DD2.1 через диод VD5 поступают на работающий в ключевом режиме транзистор VT1. В его коллекторную цепь включено реле К1, которое коммутирует соответствующие цепи передатчика.
При переводе манипулятора в положение «Тире» на вывод 9 элемента DD1.3 и вывод 5 элемента DD1 2 подается низкий логический уровень. При этом начинает работать тактовый генератор. С инверсного выхода триггера DD2.1. а также с DD2.2 через диоды VD1, VD3, VU4 на элементы DD1.3 и DD1.2 поступает логический «0», обеспечивающий работу тактового генератора на время формирования «тире» нормальной длительности. «Тире» получается путем суммирования на резисторе R3 «точек» и «двойных точек», поступающих с прямых выходов триггеров DD2.1 и DD2.2 через диоды VD5 и VD6.
Детали электронного ключа размещают на печатной плате размерами 65х45 мм.
В ключе можно использовать микросхемы серий К133, К158, К130. Диоды VD1-VD6 — любые импульсные, транзистор VT1 – любой маломощный структуры n-p-n. Реле К1 — РЭС-15 (паспорт РС4.591.002). Вместо него можно применить РЭС-43 (паспорт РС4.569.201) или другие, у которых напряжение срабатывания не превышает 5 В.
Другие схемы и решения телеграфных ключей вы можете скачать
Формат: файлы txt, jpg в архиве rar.
Размер: 111 kb.
Уже много лет радиолюбители для передачи «морзянки» предпочитают пользоваться автоматическими телеграфными ключами. Такое электронное устройство, управляемое механическим манипулятором, обеспечивает более четкую передачу знаков кода Морзе при меньших нагрузках на пальцы руки оператора. Оно к тому же позволяет легко регулировать скорость передачи знаков телеграфной азбуки, не нарушая при этом принятого соотношения длительности звучания точек и тире (1:3).
Публикуемый ключ многие года проработал без сбоев и нареканий. Был собран с момента публикации в журнале Радио.
Он содержит тактовый генератор на элементах DD1.1-DD1.3, формирователь «точек» и «тире» на D-триггерах DD3.1, DD3.2, сумматор импульсов на элементе DD2.4, тональный генератор на элементах DD2.1, DD2.2 и транзисторе VT1, служащий для слухового контроля передачи телеграммы, узел управления передатчиком любительской радиостанции (транзистор VT2 и электромагнитное реле К1) и манипулятор SA1 с элементом DD2.3.
Как работает такой телеграфный ключ? В нейтральном положении манипулятора SA1, когда его якорь не касается боковых контактов, тактовый генератор не работает, так как блокирован напряжением низкого уровня на нижнем по схеме входе элемента DD1.1, соединенном с общим проводом через резистор R3 сравнительно малого сопротивления. Тональный генератор контроля тоже заблокирован напряжением низкого уровня с выхода элемента DD2.4. Этот элемент находится в нулевом состоянии потому, что в это время на прямом выходе триггера DD3.1 и инверсном выходе триггера DD3.2 действует напряжение высокого уровня. Работу телеграфного ключа иллюстрируют временные диаграммы:
Для формирования «тире» якорем манипулятора SA1 касаются левого (по схеме) контакта. Элемент DD2.3 переключается в единичное состояние и выходным напряжением высокого уровня запускает тактовый генератор. С этого момента на выходе согласующего инвертора DD1.4 появляются импульсы тактового генератора (диаграмма а на рис. 2), которые поступают на вход С триггера DD3.1. Период импульсной последовательности тактового генератора, регулируемый переменным резистором R1, равен длительности «точки».
По фронту первого импульса триггер DD3.1 переключается в противоположное состояние, в результате чего на его прямом выходе появляется напряжение низкого уровня, которое переводит элемент DD2.4 в единичное состояние. Одновременно включается тональный генератор, так как теперь на верхнем входе элемента DD2.2 появилось напряжение высокого уровня. Импульсы звуковой частоты усиливает транзистор VT1, включенный эмиттерным повторителем, а с движка переменного резистора R7, включенного в эмиттерную цепь транзистора, импульсы поступают на головные телефоны BF1. Одновременно сработает реле К1, контакты К1.1 которого манипулируют передатчик.
По фронту второго импульса тактового генератора триггер DD3.1 переключается в единичное состояние и перепадом напряжения на инверсном выходе переводит триггер DD3.2 в нулевое состояние (диаграммы б и в на рис. 2). Теперь на нижнем по схеме входе элемента DD2.4 будет напряжение низкого уровня, но единичное состояние этого элемента сохранится еще на время длительности двух «точек» (диаграмма г на рис. 2). Лишь по фронту четвертого импульса тактового генератора, когда оба триггера примут исходное состояние, элемент DD2.4 перейдет в нулевое состояние и выходным напряжением низкого уровня заблокирует тональный генератор. В этот же момент отпустит якорь реле К1. Наступает пауза, которая по длительности равна «точке», начинается следующий цикл формирования знака. Длительность каждого «тире» больше периода «точки» в три раза, что соответствует правилам передачи телеграфной азбуки.
Для формирования «точек» якорь манипулятора SA1 устанавливается в правое положение. При этом элемент DD2.3 вновь оказывается в единичном состоянии и через диод VD1 запускает тактовый генератор. Одновременно на входе R триггера DD3.2 появляется напряжение низкого уровня, в результате чего триггер оказывается заблокированным в нулевом состоянии. Напряжение высокого уровня на инверсном выходе этого триггера не будет препятствовать импульсам, поступающим с прямого выхода триггера DD3.1, воздействовать на элемент DD2.4. На выходе этого элемента будут формироваться «точки» до тех пор, пока якорь манипулятора не будет установлен снова в нейтральное положение.
Каково назначение диодов VD1-VD3? Диод VD1 -развязывающий. Когда элемент DD2.3 переходит в единичное состояние, с его выхода через этот диод на нижний вход элемента DD1.1 поступает напряжение высокого уровня, которое запускает тактовый генератор. Этот диод, кроме того, предотвращает попадание напряжения низкого уровня от элемента DD2.3 на нижний вход элемента DD1.1 в те отрезки времени, когда элемент DD2.4 оказывается в единичном состоянии и выходным напряжением высокого уровня поддерживает тактовый генератор в режиме генерации. Поэтому и «точки», и «тире» будут сформированы полностью, независимо от момента возвращения манипулятора в нейтральное положение.
Диод VD2 также выполняет развязывающую функцию, чтобы напряжение низкого уровня на выходе элемента DD2.4 не препятствовало работе тактового генератора.
Благодаря диоду VD3, независимо от того, в правое или левое положение переведен якорь манипулятора, элемент DD2.4 будет переключаться в единичное состояние.
Благодаря включению транзистора VT1 эмиттерным повторителем сопротивление головных телефонов BF1 не имеет особого значения. Резистор R8 ограничивает коллекторный ток транзистора в случае непреднамеренного замыкания эмиттера транзистора на общий провод.
Чертеж монтажной платы электронной части автоматического телеграфного ключа:
Все постоянные резисторы типа МЛТ-0,25, оксидный конденсатор C1-K50-6. Электромагнитное реле К1-РЭС55 (паспорт РС4.569.724). Дроссель L1 наматывают на кольце диаметром 8 и высотой 4 мм из феррита 600НН; он должен содержать 150-200 витков провода ПЭЛШО 0,25.
Если телеграфный ключ пока не предполагается использовать для совместной работы с передатчиком радиостанции, тогда весь узел управления передатчиком, начинающийся с резистора R8, можно исключить. В таком виде устройство поможет успешному освоению скоростного приема на слух и передачи телеграфной азбуки.
Возможная конструкция манипулятора автоматического телеграфного ключа:
Основанием 1 манипулятора служат две сложенные вместе пластины из прочного изоляционного материала (например, текстолита), скрепленные по углам винтами 9, 10. Якорь 2 представляет собой пластину длиной 115…120 и шириной 15 … 18 мм, выпиленную из двустороннего фольгированного стеклотекстолита. Винтами 4 он укреплен между двумя металлическими уголковыми стойками 3 и удерживается в нейтральном положении амортизаторами 6 прямоугольной формы из поролона, приклеенными к основанию.
На уголковых стойках 7 из стали или латуни, укрепленных на основании винтами с потайными головками, находятся регулировочные винты 8, образующие неподвижные контакты манипулятора. Против них с обеих сторон якоря напаивают контакты от контактных пластин негодного электромагнитного реле, например, МКУ-48 или ему подобного. После установки необходимых зазоров между якорем и боковыми контактами регулировочные винты фиксируют гайками 11.
Проводники, соединяющие монтажную плату с манипулятором, -припаивают к лепесткам 5, размещенными под уголковыми стойками.
Вашему вниманию предлагается несложный электронный телеграфный ключ с применением современной элементной базы – PIC-контроллера. Это позволило минимизировать размеры устройства и встроить его непосредственно в трансивер.
Телеграфный ключ разрабатывался для встраивания в трансивер, однако может применяться и в виде отдельного блока. Схема устройства показана на рис. 1.
Ключ предназначен для формирования знаков телеграфной азбуки. Принцип работы очень прост. В исходном состоянии манипулятор SB3 находится в среднем положении.
На выводах 17 (RAO) и 18 (RA1) микроконтроллера DD1 присутствует высокий уровень. При переводе манипулятора в нижнее по схеме положение на выводе 6 (RBO) возникает серия импульсов, соответствующая “точкам”. “Точки” будут генерироваться, пока манипулятор нажат. Длительность каждой “точки”
определяется установленной скоростью. Аналогично при переводе манипулятора в верхнее по схеме положение формируются “тире”.
Кнопки SB1 и SB2 предназначены для изменения скорости передачи сигнала. Установленная скорость записывается в первую ячейку EEPROM. При следующем включении устройства программа считывает значение этой ячейки и устанавливает скорость.
Такое решение, а также применение кварцевого резонатора позволяет всегда и с высокой точностью устанавливать скорость передачи, которая мало зависит от температуры и питающего напряжения. Манипуляция осуществляется активным низким сигналом с коллектора транзистора VT1.
При разработке устройства основной целью ставилась простота и минимум деталей. Возможность записи в память не разрабатывалась ввиду того, что сейчас на любительской радиостанции в основном применяются компьютеры.
А в компьютерных программах работа с так называемыми “макросами” реализована на таком уровне, что в “железе” это воплотить практически нереально. Поэтому ключ применяется, как правило, при повседневных радиосвязях или в полевых условиях.
Ключ имеет память на один знак – так называемый “ямбический” режим. То есть, если в момент воспроизведения, например, тире, будет нажата точка, то по окончании воспроизведения тире эта точка также прозвучит. И наоборот. Скорость можно регулировать от самой низкой до примерно 120 часов в минуту.
В связи с тем что ключ предназначен для встраивания в трансивер, в нем не предусмотрен тональный выход. Контроль осуществляется по цепи QSK трансивера.
При применении ключа в виде отдельного устройства можно для самоконтроля добавить звуковой генератор и управлять им с вывода 6 микроконтроллера DD1. Другой вариант – использовать так называемый “зуммер” от компьютера. Это небольшого размера капсюль, который при подаче на него напряжения излучает тональный сигнал в диапазоне 0,8…2 кГц.
На рис. 2 показана печатная плата для устройства, собранного из обычных деталей, а на рис. 3 – для деталей поверхностного монтажа (типоразмер 0805). Расположение деталей показано в масштабе 2:1.
При программировании микроконтроллера необходимо установить флаги FOSCO и WDTE. Данные для программирования приведены в таблице 1. При первом включении микроконтроллер считывает значение скорости из первой ячейки EEPROM. Если микроконтроллер раньше не программировался, то в этой ячейке, скорее всего, будет записано шестнадцатеричное число FF. Это соответствует самой маленькой скорости. При желании на этапе программирования в эту ячейку можно занести другое шестнадцатеричное число, например, 2А, что будет соответствовать средней скорости.
Таблица 1.
Электронный стабилизатор 78L05 можно заменить на КР142ЕН5А в обычном исполнении, при этом, возможно, придется увеличить размеры печатной платы. Если предполагается работа от батареи гальванических элементов, можно вообще не устанавливать стабилизатор. Разумеется, напряжение батареи не должно превышать 5,5 В. Питающее напряжение для микроконтроллера PIC16F84, поданным производителя, может лежать в пределах 4,5…5,5 В при использовании в качестве задающего генератора кварцевого резонатора с высокой частотой (HS).
Частота кварцевого резонатора ZQ1 может отличаться от указанной на схеме. От номинала частоты зависят верхнее и нижнее значения скорости. В качестве транзистора VT1 подойдет любой кремниевый n-p-п проводимости, например, из серий КТ3102, КТ645 и т. п. Необходимо только убедиться, что максимальный ток и напряжение коллектора не меньше, чем требуется для коммутации нагрузки.
Если манипулятор SB3 будет расположен на некотором отдалении от устройства, нужно установить блокировочные керамические конденсаторы емкостью 1000 пФ, подключенные к выводам 17 и 18 DD1, а также применить резисторы R5 и R6 меньшего сопротивления (1…2 кОм). Аналогичные рекомендации касаются и кнопок регулировки скорости.
Скачать
прошивку Р1С-контроллера.
Е. КРОЧАКЕВИЧ, (
VQ
2
LE
)
Одним из примеров применения логических интегральных микросхем (ИМС) в радиолюбительской практике является предлагаемый вниманию читателей автоматический телеграфный ключ, отличающийся малыми габаритами, высокой надежностью и удобством в эксплуатации.
Для его построения могут быть использованы как диодно-транзисторные, так и транзисторно-транзисторные логические ИМС двух типов: многовходовые логические элементы И-НЕ (вентили) и тактируемые фронтом JK-триггеры.
Рис. 1. Принципиальная схема автоматического телеграфного ключа
Принципиальная схема ключа приведена на рис. 1. Устройство содержит генератор тактовых импульсов (ГТИ), построенный на вентилях D1.1
и D1.2,
триггеры D3
и D4,
схему управления триггерами на элементах D1.
S
и D1.4,
монитор, собранный на вентилях D2.1,
D2.2
и D2.3,
и оконечный каскад на базе элемента D2.4
и транзисторов V7
и V8.
Эпюры напряжений в схеме, иллюстрирующие ее работу, приведены на рис. 2.
Рис. 2. Эпюры сигналов в схеме
Триггеры D3
и D4
ключа работают в счетном режиме и делят частоту тактовых импульсов (рис. 2, а),
следующих с периодом Т,
на 2. К оконечному каскаду сигналы с выходов D3
и D4
поступают через схему D2.4,
осуществляющую операцию И. Таким образом, триггер D3
формирует точки и интервалы длительностью Т
(рис. 2, б), а добавление с выхода D4
сигнала, показанного на рис. 2, в,
длительностью 2Т
обеспечивает формирование тире, длительность которых составит, очевидно, ЗТ.
Суммированный сигнал (см. рис. 2, г)
с выхода D2.4
поступает на вход оконечного каскада – на базу транзистора V7.
В процессе передачи манипулятором коммутируют входы вентилей D1.3
и D1.4,
при этом к триггерам с выходов элементов D1.3
и D1.4
поступают сигналы, разрешающие их переключения. Связь инверсного выхода триггера D4
с входом вентиля D1.3
необходима для разрешения работы триггера D3
в режиме счета при формировании сигнала тире независимо от положения манипулятора во время передачи этого знака. В схему предлагаемого ключа введена также дополнительная связь выхода ГТИ с входом J 4 триггера D4,
исключающая возможность одновременного формирования сигналов С 3 = 0 и J 4 = 1, что привело бы к вероятности ложной передачи тире вместо точки (подстрочный индекс названия входа триггера соответствует порядковому номеру триггера).
Для оценки преимуществ схемы автоматического телеграфного ключа с применением тактируемых фронтом JК-триггеров существенно то обстоятельство, что для переключения JK-триггера из нуля в единицу не обязательно длительное присутствие единицы на входе J. Чтобы изменить его состояние, достаточно хотя бы кратковременного совпадения по времени сигнала J = 1 и вершины тактового импульса. Таким образом, совпадение сигналов J
= 1 и С =
1 при последующих J = 0 и С
= 1 обеспечивает запоминание поступившего управляющего сигнала и, следовательно, память положения манипулятора. В данном случае тактовые импульсы поступают со скважностью, равной 2 (длительность паузы равна длительности импульса), и положение манипулятора запоминается здесь в течение той половины интервала между двумя знаками сообщения, которая непосредственно примыкает к началу очередного знака. Замыкание манипулятора в интервале времени, когда С 3 = О, не будет иметь отклика. Отметим, что при передаче сообщения с малой скоростью, когда реальная длительность прижатия манипулятора может быть много короче точки (или интервала) между знаками сообщения, обеспечение памяти положения манипулятора требуется во всем интервале, чтобы гарантировать надежный отклик на каждое замыкание манипулятора. Наоборот, при высоких скоростях передачи сообщений реальная длительность прижатия манипулятора может быть несколько длиннее точки. В этом случае память положения манипулятора вообще не нужна (по крайней мере, во всем интервале), так как при ее наличии даже самая малая передержка манипулятора приведет к отработке лишнего знака. Таким образом, построение предлагаемого ключа с памятью положения манипулятора именно в половине интервала между знаками сообщения является решением, в известной мере удовлетворяющим одновременно обоим этим противоречивым требованиям.
ГТИ предлагаемого ключа построен по простой схеме симметричного мультивибратора на вентилях D1.1
и D1.2
с хронирующими конденсаторами С1
и С2. Частоту следования тактовых импульсов и, следовательно, скорость передачи сообщений устанавливают регулировкой R3
в зависимости от желания или квалификации оператора. При конструировании ключа следует иметь в виду довольно острую зависимость в такой схеме ГТИ частоты генерации от величины питающего напряжения. Так, например, когда положение регулировки R3
соответствует максимальной скорости передачи сообщения (движок R3
на корпусе), изменение напряжения питания на 1 % вызывает изменение частоты следования тактовых импульсов на 3 – 5%. Это обстоятельство предъявляет определенные требования к стабильности источника питания. В процессе наладки ГТИ иногда наблюдается срыв или неустойчивость генерации. Суть этого явления состоит в том, что при одновременном заряде конденсаторов С1
и С2
до одинакового напряжения, на входы обоих вентилей мультивибратора поступают уровни логического нуля, а на выходах оказываются уровни логической единицы, и генерация, следовательно, отсутствует. Если в процессе настройки в ГТИ произошел такой срыв генерации, следует отключить питание и разрядить оба конденсатора. С точки зрения устойчивой генерации ГТИ напряжение питания в схему ключа следует подавать резким фронтом, например с помощью тумблера. Диоды VI
и V2
предназначены для защиты входов вентилей D1.1
и D1.2
от отрицательных полуволн напряжения, образующихся при перезаряде конденсаторов С1
и G2.
Отсутствие этих диодов может привести к сбоям в работе ключа.
Как уже говорилось, в устройстве, изображенном на рис. 1, на выходе ГТИ формируются импульсы со скважностью, равной 2 (меандр), что обеспечивает память положения манипулятора в половине интервала между знаками сообщения. В пределах этого интервала память может быть увеличена или сокращена по желанию конструктора. Для этого достаточно нарушить симметрию плеч мультивибратора путем изменения емкостей конденсаторов С1
и С2.
Наличие в схеме ключа монитора, хотя бы в виде макета, существенно упрощает процесс наладки устройства, а использование монитора в окончательной конструкции не ухудшает общей надежности и помехоустойчивости ключа, но зато облегчает работу оператора.
В данном случае монитор – низкочастотный генератор сигналов прямоугольной формы, собран по схеме мультивибратора на логических элементах D2.1
и D2.2.
В состав монитора входит также ключевой буферный каскад на вентиле D2.3.
К входу монитора могут быть подключены один высокоомный или ряд низкоомных наушников. Наиболее эффективно применение микротелефона ТМ-2М.
Выходной каскад телеграфного ключа можно строить по различный принципиальным схемам, как с использованием транзисторов, так и микросхем. На рис. 3 приведен вариант построения выходного каскада ключа с применением микросхем серии К155, а на рис. 4 и 5 – с применением транзисторов, например КТ315. Каждый из этих вариантов обладает своими достоинствами и недостатками, которые следует учитывать при конструировании. В частности, при построении транзисторного варианта выходного каскада для его питания можно использовать относительно высокие напряжения, ограничиваемые лишь величиной предельно допустимого напряжения «коллектор – эмиттер» применяемого транзистора, – отсюда широкий выбор типов реле Р1,
номинальные токи срабатывания которых не должны превышать 100 мА (применительно к транзисторам КТ315). К тому же площадь монтажа, занимаемая двумя транзисторами КТ315, меньше площади, занимаемой микросхемой. При построении же интегрального варианта выходного каскада питание реле и логических микросхем должно осуществляться одним и тем же напряжением, а ограничение максимального выходного тока каждого вентиля (15 – 30 мА) затрудняет выбор реле с надлежащими уровнями напряжения и мощности срабатывания. Кроме того, конструкция в этом варианте загружается достаточно большим количеством навесных элементов (R10
– R13
на рис. 3) для равномерного распределения нагрузки на каждый вентиль.
Рис. 3. Вариант построения выходного каскада ключа на логических микросхемах
Рис. 4. Вариант построения выходного каскада ключа на транзисторах (срабатывание на замыкание реле Р1)
Рис. 5. Вариант построения выходного каскада ключа на транзисторе (срабатывание на размыкание реле
P
1)
Применять микросхемы в выходном каскаде ключа целесообразно лишь в тех случаях, когда вся оперативная автоматика радиостанции выполнена на логических элементах с тем же напряжением питания (+ 5 В), причем источник питания обладает достаточной выходной мощностью. Применение транзисторных каскадов, изображенных на схемах рис. 4 и 5, обосновано в случаях, когда с целью сокращения количества микросхем из конструкции исключены монитор и вентиль D2.4.
В остальных случаях целесообразно построение оконечного каскада по схеме рис. 1.
Рис. 6. Принципиальная схема ГТИ
Особый интерес представляет использование в составе телеграфного ключа ГТИ, принципиальная схема которого изображена на рис. 6. Здесь с помощью резистора R3
одновременно регулируется частота и скважность тактовых импульсов. Это позволяет при малых скоростях передачи работать с памятью положения манипулятора практически во всем интервале между знаками сообщения, обеспечивая тем самым однозначный отклик ключа на любое кратковременное замыкание манипулятора. При максимальной же скорости работы ключа память положения манипулятора в интервале между смежными знаками сообщения практически отсутствует, что исключает отработку лишних знаков сообщения при возможных передержках манипулятора. Отметим, что в середине диапазона регулирования скорости память положения манипулятора, как и в схеме ключа рис. 1, охватывает половину интервала между смежными знаками сообщения.
Параметры навесных элементов и номера выводов микросхем указаны на рисунках для случая применения ИМС серий К155 или К136. В качестве вентилей D1.1
– D1.4
и D2.1
– D2.4
можно использовать К155ЛАЗ или К136ЛАЗ, а в качестве триггеров D3
и D4
– ИМС К155ТВ1 или К136ТВ1. Таким образом, схема построена на четырех интегральных микросхемах. Однако, исключив из схемы монитор и изменив построение выходного каскада, можно обойтись тремя микросхемами, а применение ИМС, содержащих два JK-триггера в одном корпусе, например К134ТВ14, сокращает количество микросхем до двух.
Можно применять любые кремниевые или германиевые малогабаритные диоды с малыми токами утечки, но удачнее всего с микросхемами сочетаются микроминиатюрные диоды КД102 или КД104 с любыми буквенными индексами.
Некоторые входы микросхем при построении схемы ключа остаются незадействованными. В общем случае для повышения помехоустойчивости ключа на незадей-ствованные входы следует подавать напряжение логической единицы (+ 2,5 – Ь4 В), а также шунтировать выводы питания каждой микросхемы в месте ее установки конденсатором емкостью 0,1 мкФ. Однако, учитывая отсутствие в схеме рис. 1 длинных линий, разводящих мощные импульсы с крутыми фронтами, и достаточно большие мощности срабатывания элементов серий К155 и К136, вполне допустимо незадействованные входы оставлять неподключенными (как, например, установочные входы R
и 5 триггеров D3
и D4).
Незадействованные входы J и К
триггеров можно также оставлять неподключенными, либо объединять между собой незадействованные входы J с одним из задействованных входов J или же с выходом Q; а входы К
– с выходом каждого триггера, тем более что конструктивно входы J большинства интегральных JK-триггеров расположены рядом с выходом Q, а входы К
– с выходом Q.
Это решается в каждом конкретном случае в процессе составления монтажной схемы. Незадействованные входы вентилей 2И-НЕ объединяются с рабочими. В стадии макетирования и наладки, однако, незадействованные выводы подключать не рекомендуется; тогда в случае выхода из строя одного из рабочих входов можно будет использовать ранее незадействованный.
Для повышения общей помехоустойчивости ключа в случаях недостаточно эффективно экранированного выходного каскада передатчика или при наличии других помех в местах подключения к устройству проводников от движка потенциометра R3
и электродов манипулятора при необходимости следует установить развязывающие конденсаторы С р емкостью 0,022 – 0,068 мкФ. Диод V4
установлен для защиты входа вентиля D1.3
от наводок положительной полярности, что повышает помехоустойчивость по цепям манипуляции. Конденсатор С5
необходим для исключения воздействия на схему ключа коммутационных помех, возникающих при работе реле PL
Контакты реле Р1
в цепи манипуляции передатчика шунтированы RС-цепью для исключения их искрения, а также для электрической нейтрализации вибрации контактов в момент коммутации. Это требование не является специфическим в связи с применением микросхем в конструкции ключа; его, однако, важно иметь в виду, особенно при попытках имитировать кнопкой действие ГТИ, для проверки действия логической части схемы ключа. Конденсатор С п емкостью 0,047 – 0,068 мкФ включен на шины питания для предотвращения импульсных всплесков напряжения в моменты переключения элементов схемы в процессе работы ключа.
Большое число схем телеграфных ключей опубликовано в средствах периодической печати и в Интернете, но не все способны удовлетворить привередливого телеграфиста. То ключ собран на большом числе комплектующих элементов, то эти элементы слишком “серьёзны” для такой несложной конструкции.
Например, если ключ выполнен на микроконтроллере, потребуются его приобретение и программирование, что не всегда доступно. А то схема слишком простая, и устройство, собранное по ней, обладает не всеми требуемыми возможностями.
Принципиальная схема
Поискав уже “готовую простенькую” схему ключа для своего нового будущего трансивера, я так и не смог найти желаемую (ни в периодической печати, ни в Интернете). Мало того, в Интернете встретил немало постов с вопросами, именно по этой теме. Однако моё внимание всё же привлекла схема одного телеграфного ключа, уже давно ставшая почти классической .
Собран он на трёх микросхемах К176ЛЕ5, К176ЛА7 и К176ТМ1. И минимальный сервис у ключа в наличии, и схема не очень сложная, и питание – 9 В, поэтому не нужно отдельного источника питания в трансивере для телеграфного ключа. А если применить микросхемы серии К561, то подойдёт и 12 В, что ещё удобнее.
Хотя мне и встретилась схема ключа, выполненного всего на двух микросхемах К561ИЕ11 и К561ЛЕ5 , но вот отзывы пользователей о его работе были не очень лестные, к тому же микросхема К561ИЕ11 не столь распространена, как хотелось бы. Поэтому я предпринял попытку упростить схему ключа , выполненную на трёх микросхемах, которая взята в качестве прототипа.
Рис. 1. Электронный телеграфный ключ, схема.
В результате этой модернизации был разработан телеграфный ключ, схема которого показана на рис. 1 и основные параметры которого практически совпадают с параметрами прототипа.
Использовано то же самое напряжение питания, скорость передачи – 30…270 знаков в минуту, её интервал немного расширен вниз с целью получения минимальной скорости, принятой в качестве начальной при профессиональном обучении телеграфной азбуке.
Применены широко доступные микросхемы малой степени интеграции и, кроме всего прочего, их число, как и транзисторов и диодов, меньше.
При этом устройство снабжено как звуковой, так и световой сигнализацией допускает подключение внешнего реле для управления различными узлами с гальванической развязкой и позволяет управлять работой телеграфных гетеродинов.
Имеется выход на УЗЧ приёмника для организации самопрослу-шивания во время передачи телеграфных сигналов, возможно и управление другими устройствами с помощью логических уровней.
Звуковой контроль формируемых сигналов осуществляется с помощью телефонного капсюля BF1, визуальный – с помощью светодиода HL1.
На элементах DD1.1, DD1.2 собран импульсный RC-генератор с регулируемой частотой. Резистором R2 можно регулировать скорость передачи в указанном выше интервале. На триггере DD2.1 собран формирователь точек, на триггере DD2.2 совместно с триггером DD2.1 – формирователь тире.
На диодах VD3, VD4 собран элемент ИЛИ, на логических элементах DD1.3, DD1.4 – генератор звуковой частоты, на транзисторе VТ1 – ключ.
Работает ключ следующим образом. В нейтральном положении манипулятора SA1 на один из входов (вывод 2) элемента DD1.1 и на один из входов (вывод 6) элемента DD1.2 через резистор R3 поступает напряжение, соответствующее уровню лог. 1, поэтому импульсный генератор заторможен и на входе С (вывод 3) триггера DD2.1 – лог.
0. Одновременно лог. 1 на входе R триггера DD2.2 устанавливает такой же уровень и на его инверсном выходе (вывод 12). При переводе манипулятора SA1 в положение “Точки” (влево по схеме) на выводы 2 и 6 микросхемы DD1 поступает лог.
0, и импульсный генератор начинает работать. Его выходные импульсы поступают на вход С (вывод 3) триггера DD2.1, который формирует сигнал точки, поступающий через диод VD3 на базу транзистора VТ1, последний периодически открывается, и светодиод HL1 начинает светиться в такт этим сигналам.
Инвертированные импульсы с коллектора транзистора VТ 1 через резистор R7 поступают на вход (вывод 9) элемента DD1.3. В результате звуковой генератор начинает формировать телеграфные посылки 34 сигнала с частотой около 1 кГц. Частота звукового генератора определяется номиналами элементов R8 и С7. Состояние триггера DD2.2 при этом не изменяется, поскольку на его вход R (вывод 10) через резистор R4 поступает уровень лог. 1. Ключ обеспечивает формирование сигнала точки нормальной длительности даже при кратковременном замыкании манипулятора SA1.
При переводе манипулятора SA1 в положение “Тире” (вправо по схеме) генератор импульсов и триггер DD2.1 работают, как и в положении “Точки”, однако на входе R триггера DD2.2 присутствует лог. 0, поэтому он изменяет своё состояние под действием импульсов с выхода триггера DD2.1.
Импульсы с выходов триггеров DD2.1 и DD2.2 через диоды VD3, VD4 поступают на резистор R5, где суммируются, формируя сигнал тире. Ключ обеспечивает передачу тире нормальной длительности даже при кратковременном замыкании манипулятора. Длительность точки равна длительности паузы, длительность тире – длительности трёх точек.
Конденсатор С4 блокирует цепи управления по ВЧ, он подавляет наводки, что позволяет вынести светодиод на некоторое удаление от каскада, например, на переднюю панель, конденсатор С5 обеспечивает мягкость передачи телеграфной посылки (в случае электронного управления телеграфным гетеродином), от его ёмкости зависят фронт и спад телеграфной посылки. Устройство собрано на макетной печатной плате с применением проводного монтажа. Микросхемы серии К176 можно заменить аналогичными серии К561 (К564), при этом напряжение питания можно увеличить до 15 В. Резисторы – МЛТ, С2-23, оксидные конденсаторы – К50-35 или импортные, остальные – керамические К10-17 или плёночные серии К73.
Транзистор – любой серий КТ315, КТ3102. Реле можно применить любое малогабаритное с номинальным напряжением, соответствующим напряжению питания ключа, и током срабатывания не более 100 мА. Подойдут, например, отечественные РЭС10 (паспорт РС4.524.303 или РС4.524.312), РЭС15 (исполнение РС4.591.002 или ХП4.591.009), РЭС49 (исполнение РС4.569.421 -02 или РС4.569.421-08).
Светодиод можно применить маломощный любого свечения, его желательно разместить на передней панели трансивера. Телефонный капсуль BF1 – ТА56М с сопротивлением катушки 1,6 кОм, можно применить аналогичный высокоомный капсуль ТОН-2.
Потребляемый устройством ток в режиме молчания – 0,3 мА, в режиме “Точка” – 10 мА, в режиме “Тире” – 15 мА, что несколько больше, чем у прототипа, но того “требуют” световая и звуковая сигнализации.
Телеграфные гетеродины
Ключ может управлять кварцевыми телеграфными гетеродинами по цепи коллектора (рис. 2), истока (рис. 3) и эмиттера (рис. 4). Все три генератора выполнены по схеме ёмкостной трёхточки.
Рис. 2. Схема кварцеванного телеграфного гетеродина.
Рис. 3. Схема кварцеванного телеграфного гетеродина (вариант 2).
Рис. 4. Схема кварцеванного телеграфного гетеродина (вариант 3).
Подстроечные конденсаторы, включённые в цепь кварцевого резонатора, обеспечивают подстройку частоты генерации, а такие же конденсаторы, установленные на выходе, обеспечивают регулировку уровня сигнала, поступающего на последующие каскады.
Владимир РУБЦОВ (UN7BV), г. Астана, Казахстан. Радио-12-17.
Литература:
- Раудсепп X. Экономичный телеграфный ключ. – Радио, 1986, № 4, с. 17.
- Васильев В. Ключ на двух микросхемах. – Радио, 1987, № 9, с. 22, 23.