Простая схема генератора шим сигнала. Широтно-импульсная модуляция (ШИМ)

Прочее

Простая схема генератора шим сигнала. Широтно-импульсная модуляция (ШИМ)

Фото генератора.

Что может этот генератор? Взглянем на параметры.

  1. Рабочее напряжение: 3.3 – 30V;
  2. Частота генерации: 1Hz – 150KHz;
  3. Точность генерации частоты: 2%;
  4. Мощность нагрузки: 5…30mА;
  5. Амплитуда выходного сигнала равна напряжению питания;
  6. Температура окружающей среды: -20 … +70 °С.

На дисплей можно вывести только 2 числа по 3 цифры в каждом. В нижней строке отображается скважность ШИМ в процентах, а в верхней – частота. Частота выводится на дисплей по следующим правилам:

  • XXX, шаг в 1Гц, в диапазоне 1 – 999Гц;
  • X.XX, шаг в 0.01кГц, в диапазоне 1.00 – 9.99кГц;
  • XX.X, шаг в 0.1кГц; в диапазоне 10.0 – 99.9кГц;
  • X.X.X, шаг в 1 кГц; в диапазоне 100 – 150 кГц.

Дисплей управляется микросхемой HT1621B, дисплей универсальный, на нем имеются символы, необходимые для построения термометра, гигрометра, вольтметра, амперметра и ваттметра, но в нашем случае они не используются. Дисплей имеет яркую синюю подсветку. К слову, замечу, что дисплей на моем генераторе оказался потертым, будто его откуда-то сняли.

Главной микросхемой генератора является микроконтроллер STM8S003F3P6. И поскольку этот микроконтроллер имеет EEPROM память, то настройки сохраняются при выключении.

Управлять генератором можно двумя способами: кнопками и по UART. С кнопками всё ясно, одна пара кнопок управляет частотой, вторая скважностью. А вот с UART всё намного интереснее. Обмен данными должен происходить со следующими параметрами:

  • 9600 bps Data bits: 8
  • Stop bit: 1
  • Check digit: none
  • Flow control: none

Для того, чтобы установить частоту генерации, необходимо отправить частоту так, как она отображается на дисплее прибавив перед значением частоты букву F. Например, для установки частоты в 100 Гц необходимо отправить F100, для 105 кГц – F1.0.5, для 10.5 кГц – F10.5 и так далее.

Для установки скважности необходимо отправить трехзначное число скважности добавив перед ним букву D . Например, D050, D100, D001.

Если отправлена верная команда, то генератор ответит DOWN, если ошибочная – FALL. Но есть одно НО, я так и не смог настроить работу с генератором через UART.

Я решил проверить генератор при помощи логического анализатора. Вот что получилось.

Частота 1 Гц, скважность 1%. Как видим погрешность пока небольшая.

Частота 1 Гц, скважность 50%.

Частота 1 Гц, скважность 99%.

Частота 1 кГц, скважность 1%.

Частота 1 кГц, скважность 50%.

Частота 1 кГц, скважность 99%. Тут мы видим, что при установленных 99% скважности на самом деле заполнение составляет 100%.

Частота 1 кГц, скважность 91%. Я начал снижать скважность, и вплоть до 92% заполнение составляло 100%, и только при 91% ситуация исправляется.

Частота 50 кГц, скважность 1%. Как видим что тут всего 0,2% вместо 1%.

Частота 50 кГц, скважность 50%. Здесь отличается на 1%.

Частота 50 кГц, скважность 99%. И тут снова отклонение -1%.

Частота 100 кГц, скважность 1%. А вот тут ещё ничего нет.

Частота 100 кГц, скважность 2%. А при 2% сигнал появляется, но на самом деле заполнение 0,4%.

Частота 100 кГц, скважность 50%. Отклонение почти -2%.

Частота 100 кГц, скважность 99%. И тут почти -1%.

Частота 150 кГц, скважность 1%. Снова нет сигнала.

Частота 150 Гц, скважность 3%. И появляется сигнал только при 3%, но заполнение составляет 0,6%.

Частота 150 кГц, скважность 50%. Но на самом деле заполнение 46,5%, на -3,5% уже отличие.

Частота 150 кГц, скважность 99%. И тут погрешность, но всего 1,5%.

Выборка достаточно грубая, но на этом исследования не закончены. Я решил измерить скважность при различном заполнении (шаг 5%) и на различных частотах (шаг 25000 Гц) и занести их в таблицу.

Схема генератора и регулируемым коэффициентом заполнения импульсов, управляемого входным напряжением. Источник импульсного сигнала изменяемой скважности. Ограничение длительности импульсов (10+)

Коэффициент заполнения импульсного сигнала. Скважность – Генератор

Регулировка скважности

Для получения сигнала с управляемой скважностью удобно использовать ШИМ – контроллеры . Эти специализированные микросхемы как раз спроектированы, чтобы формировать сигналы со коэффициентом заполнения, зависящим от внешних условий.

Для примера рассмотрим схемы на интегральном ШИМ – контроллере 1156ЕУ3 или UC3823 .

Вашему вниманию подборки материалов:

Резистор R1
– 10 кОм, подстроечный. С помощью него регулируется начальный уровень сигнала, при котором появятся импульсы минимальной длительности.

Резистор R2
– 100 кОм

Резистор R3
– 500 кОм, подстроечный. Он регулирует чувствительность, то есть увеличение этого резистора приводит к тому, что сигнал заданной амплитуды приводит к большему изменению коэффициента наполнения.

Резистор R4, Конденсатор C1
– задают частоту выходного сигнала. Формула для расчета частоты в зависимости о параметров этих деталей .

Резистор R5
– 100 кОм, подстроечный. Он регулирует максимально возможный коэффициент наполнения, а в схеме (A3), просто коэффициент заполнения.

Конденсатор C1
– 0.1 мкФ.

Готовое устройство, иллюстрирующее управление скважностью – Тренажер для снятия усталости глаз и спазма аккомодации .

Ограничение максимального коэффициента заполнения

Во многих случаях полезно ограничить максимальный коэффициент заполнения. Бывает нужно обеспечить, чтобы вне зависимости от управляющего сигнала коэффициент заполнения не превышал некоторую заданную величину. Это бывает необходимо, например, в повышающей, инвертирующей, обратноходовой, прямоходовой или пуш-пульной топологиях источников питания для того, чтобы магнитопровод дросселя или трансформатора между импульсами успел гарантированно размагнититься.

В схеме удалены все выводы и соединения, не имеющие отношения к нашей задаче ограничения скважности. Для примера выбрана микросхема 1156ЕУ3 или UC3823 . Без изменений описанный подход может применяться для микросхемы 1156ЕУ2 или UC3825 . Для других микросхем ШИМ может понадобиться подобрать номиналы деталей и учесть цоколевку этих микросхем.

Принцип работы схемы следующий. Ножка 8 отвечает за мягкий старт. На нее внутри микросхемы подается ток 1 мкА. Этот ток заряжает внешний конденсатор. По мере роста напряжения на конденсаторе увеличивается максимально возможный коэффициент заполнения. Так обеспечивается постепенное увеличение ширины импульсов при запуске. Оно необходимо, так как при включении выходной конденсатор разряжен, и, если полагаться на обратную связь, то длительность импульсов будет максимальной, пока этот конденсатор не зарядится до рабочего напряжения. Это нежелательно, так как приводит к перегрузке при включении устройства.

Подстроечный резистор и диод ограничивают максимально возможное напряжение, до которого может зарядиться конденсатор, а значит и максимально возможный коэффициент заполнения. При этом функция мягкого старта полностью сохраняется. Ширина импульсов по мере зарядки конденсатора постепенно нарастает от нуля до установленного значения. Далее рост коэффициента заполнения прекращается.

Диод
– любой маломощный, например, КД510

Подстроечный резистор
– 100 кОм

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые.

Потребовалось мне сделать регулятор скорости для пропеллера. Чтобы дым от паяльника сдувать, да морду лица вентилировать. Ну и, для прикола, уложить все в минимальную стоимость. Проще всего маломощный двигатель постоянного тока, конечно, регулировать переменным резистором, но найти резюк на такой малый номинал, да еще нужной мощности это надо сильно постараться, да и стоить он будет явно не десять рублей. Поэтому наш выбор ШИМ + MOSFET.

Ключ я взял IRF630
. Почему именно этот MOSFET
? Да просто у меня их откуда то завелось штук десять. Вот и применяю, так то можно поставить что либо менее габаритное и маломощное. Т.к. ток тут вряд ли будет больше ампера, а IRF630
способен протащить через себя под 9А. Зато можно будет сделать целый каскад из вентиляторов, подсоединив их к одной крутилке — мощи хватит:)

Теперь пришло время подумать о том, чем мы будем делать ШИМ
. Сразу напрашивается мысль — микроконтроллером. Взять какой-нибудь Tiny12 и сделать на нем. Мысль я эту отбросил мгновенно.

  1. Тратить такую ценную и дорогую деталь на какой то вентилятор мне западло. Я для микроконтроллера поинтересней задачу найду
  2. Еще софт под это писать, вдвойне западло.
  3. Напряжение питания там 12 вольт, понижать его для питания МК до 5 вольт это вообще уже лениво
  4. IRF630
    не откроется от 5 вольт, поэтому тут пришлось бы еще и транзистор ставить, чтобы он подавал высокий потенциал на затвор полевика. Нафиг нафиг.

Остается аналоговая схема. А что, тоже неплохо. Наладки не требует, мы же не высокоточный девайс делаем. Детали тоже минимальные. Надо только прикинуть на чем делать.

Операционные усилители можно отбросить сразу. Дело в том, что у ОУ общего назначения уже после 8-10кГц, как правило, предельное выходное напряжение
начинает резко заваливаться, а нам надо полевик дрыгать. Да еще на сверхзвуковой частоте, чтобы не пищало.

ОУ лишенные такого недостатка стоят столько, что на эти деньги можно с десяток крутейших микроконтроллеров купить. В топку!

Остаются компараторы, они не обладают способностью операционника плавно менять выходное напряжение, могут только сравнивать две напруги и замыкать выходной транзистор по итогам сравнения, но зато делают это быстро и без завала характеристики. Пошарил по сусекам и компараторов не нашел. Засада! Точнее был LM339
, но он был в большом корпусе, а впаивать микросхему больше чем на 8 ног на такую простую задачу мне религия не позволяет. В лабаз тащиться тоже было влом. Что делать?

И тут я вспомнил про такую замечательную вещь как аналоговый таймер — NE555
. Представляет собой своеобразный генератор, где можно комбинацией резисторов и конденсатором задавать частоту, а также длительность импульса и паузы. Сколько на этом таймере разной хрени сделали, за его более чем тридцатилетнюю историю… До сих пор эта микросхема, несмотря на почтенный возраст, штампуется миллионными тиражами и есть практически в каждом лабазе по цене в считанные рубли. У нас, например, он стоит около 5 рублей. Порылся по сусекам и нашел пару штук. О! Щас и замутим.

Как это работает

Если не вникать глубоко в структуру таймера 555, то несложно. Грубо говоря, таймер следит за напряжением на конденсаторе С1, которое снимает с вывода THR
(THRESHOLD — порог). Как только оно достигнет максимума (кондер заряжен), так открывается внутренний транзистор. Который замыкает вывод DIS
(DISCHARGE — разряд) на землю. При этом на выходе OUT
появляется логический ноль. Конденсатор начинает разряжаться через DIS
и когда напряжение на нем станет равно нулю (полный разряд) система перекинется в противоположное состояние — на выходе 1, транзистор закрыт. Конденсатор начинает снова заряжаться и все повторяется вновь.
Заряд конденсатора С1 идет по пути: «R4->верхнее плечо R1 ->D2
«, а разряд по пути: D1 -> нижнее плечо R1 -> DIS
. Когда мы крутим переменный резистор R1 то у нас меняются соотношения сопротивлений верхнего и нижнего плеча. Что, соответственно, меняет отношение длины импульса к паузе.
Частота задается в основном конденсатором С1 и еще немного зависит от величины сопротивления R1.
Резистор R3 обеспечивает подтяжку выхода к высокому уровню — так так там выход с открытым коллектором. Который не способен самостоятельно выставить высокий уровень.

Диоды можно ставить любые совершенно, кондеры примерно такого номинала, отклонения в пределах одного порядка не влияют особо на качество работы. На 4.7нанофарадах, поставленных в С1, например, частота снижается до 18кГц, но ее почти не слышно, видать слух у меня уже не идеальный:(

Покопался в закромах, которая сама расчитывает параметры работы таймера NE555 и собрал схему оттуда, для астабильного режима со коэффициентом заполнения меньше 50%, да вкрутил там вместо R1 и R2 переменный резистор, которым у меня менялась скважность выходного сигнала. Надо только обратить внимание на то, что выход DIS (DISCHARGE) через внутренний ключ таймера подключен на землю, поэтому нельзя было его сажать напрямую к потенциометру
, т.к. при закручивании регулятора в крайнее положение этот вывод бы сажался на Vcc. А когда транзистор откроется, то будет натуральное КЗ и таймер с красивым пшиком испустит волшебный дым, на котором, как известно, работает вся электроника. Как только дым покидает микросхему — она перестает работать. Вот так то. Посему берем и добавляем еще один резистор на один килоом. Погоды в регулировании он не сделает, а от перегорания защитит.

Сказано — сделано. Вытравил плату, впаял компоненты:

Снизу все просто.
Вот и печатку прилагаю, в родимом Sprint Layout —

А это напряжение на движке. Видно небольшой переходный процесс. Надо кондерчик поставить в параллель на пол микрофарады и его сгладит.

Как видно, частота плывет — оно и понятно, у нас ведь частота работы зависит от резисторов и конденсатора, а раз они меняются, то и частота уплывает, но это не беда. Во всем диапазоне регулирования она ни разу не влазит в слышимый диапазон. А вся конструкция обошлась в 35 рублей, не считая корпуса. Так что — Profit!

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t
к периоду импульса T
. D = t/T

. Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t

.

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F
= 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

В некоторых случаях, например, в фонариках или домашних осветительных приборах, возникает необходимость регулировать яркость свечения. Казалось бы, чего уж проще: достаточно изменить ток через светодиод, увеличив или уменьшив . Но в этом случае на ограничительном резисторе будет расходоваться значительная часть энергии, что совсем недопустимо при автономном питании от батарей или аккумуляторов.

Кроме того, цвет свечения светодиодов будет изменяться: например, белый цвет при понижении тока меньше номинального (для большинства светодиодов 20мА) будет иметь несколько зеленоватый оттенок. Такое изменение цвета в ряде случаев совершенно ни к чему. Представьте себе, что эти светодиоды подсвечивают экран телевизора или компьютерного монитора.

В этих случаях применяется ШИМ – регулирование (широтно – импульсное)
. Смысл его в том, что периодически зажигается и гаснет. При этом ток на протяжении всего времени вспышки остается номинальным, поэтому спектр свечения не искажается. Уж если светодиод белый, то зеленые оттенки появляться не будут.

К тому же при таком способе регулирования мощности потери энергии минимальны, КПД схем с ШИМ регулированием очень высок, достигает 90 с лишним процентов.

Принцип ШИМ – регулирования достаточно простой, и показан на рисунке 1. Различное соотношение времени зажженного и погашенного состояния на глаз воспринимается как : как в кино – отдельно показываемые поочередно кадры воспринимаются как движущееся изображение. Здесь все зависит от частоты проекции, о чем разговор будет чуть позже.

Рисунок 1. Принцип ШИМ – регулирования

На рисунке изображены диаграммы сигналов на выходе устройства управления ШИМ (или задающий генератор). Нулем и единицей обозначены : логическая единица (высокий уровень) вызывает свечение светодиода, логический нуль (низкий уровень), соответственно, погасание.

Хотя все может быть и наоборот, поскольку все зависит от схемотехники выходного ключа, – включение светодиода может осуществляться низким уровнем а выключение, как раз высоким. В этом случае физически логическая единица будет иметь низкий уровень напряжения, а логический нуль высокий.

Другими словами, логическая единица вызывает включение какого-то события или процесса (в нашем случае засвечивание светодиода), а логический нуль должен этот процесс отключить. То есть не всегда высокий уровень на выходе цифровой микросхемы является ЛОГИЧЕСКОЙ единицей, все зависит от того, как построена конкретная схема. Это так, для сведения. Но пока будем считать, что ключ управляется высоким уровнем, и по-другому просто быть не может.

Частота и ширина управляющих импульсов

Следует обратить внимание на то, что период следования импульсов (или частота) остается неизменным. Но, в общем, частота импульсов на яркость свечения влияния не оказывает, поэтому, к стабильности частоты особых требований не предъявляется. Меняется лишь длительность (ШИРИНА), в данном случае, положительного импульса, за счет чего и работает весь механизм широтно-импульсной модуляции.

Длительность управляющих импульсов на рисунке 1 выражена в %%. Это так называемый «коэффициент заполнения» или, по англоязычной терминологии, DUTY CYCLE. Выражается отношением длительности управляющего импульса к периоду следования импульсов.

В русскоязычной терминологии обычно используется «скважность» – отношение периода следования к времени импульс
а. Таким образом если коэффициент заполнения 50%, то скважность будет равна 2. Принципиальной разницы тут нет, поэтому, пользоваться можно любой из этих величин, кому как удобней и понятней.

Здесь, конечно, можно было бы привести формулы для расчета скважности и DUTY CYCLE, но, чтобы не усложнять изложение, обойдемся без формул. В крайнем случае, закон Ома. Уж тут ничего не поделаешь: «Не знаешь закон Ома, сиди дома!». Если уж кого эти формулы заинтересуют, то их всегда можно найти на просторах Интернета.

Частота ШИМ для светорегулятора

Как было сказано чуть выше, особых требований к стабильности частоты импульсов ШИМ не предъявляется: ну, немного «плавает», да и ладно. Подобной нестабильностью частоты, кстати, достаточно большой, обладают ШИМ – регуляторы , что не мешает их применению во многих конструкциях. В данном случае важно лишь, чтобы эта частота не стала ниже некоторого значения.

А какая должна быть частота, и насколько она может быть нестабильна? Не забывайте, что речь идет о светорегуляторах. В кинотехнике существует термин «критическая частота мельканий». Это частота, при которой отдельные картинки, показываемые друг за другом, воспринимаются как движущееся изображение. Для человеческого глаза эта частота составляет 48Гц.

Вот именно по этой причине частота съемки на кинопленке составляла 24кадр/сек (телевизионный стандарт 25кадр/сек). Для повышения этой частоты до критической в кинопроекторах применяется двухлопастной обтюратор (заслонка) дважды перекрывающий каждый показываемый кадр.

В любительских узкопленочных 8мм проекторах частота проекции составляла 16кадр/сек, поэтому обтюратор имел аж три лопасти. Тем же целям в телевидении служит тот факт, что изображение показывается полукадрами: сначала четные, а потом нечетные строки изображения. В результате получается частота мельканий 50Гц.

Работа светодиода в режиме ШИМ представляет собой отдельные вспышки регулируемой длительности. Чтобы эти вспышки воспринимались на глаз как непрерывное свечение, их частота должна быть никак не меньше критической. Выше сколько угодно, но ниже никак нельзя. Этот фактор следует учитывать при создании ШИМ – регуляторов для светильников
.

Кстати, просто, как интересный факт: ученые каким-то образом определили, что критическая частота для глаза пчелы составляет 800Гц. Поэтому кинофильм на экране пчела увидит как последовательность отдельных изображений. Для того, чтобы она увидела движущееся изображение, частоту проекции потребуется увеличить до восьмисот полукадров в секунду!

Для управления собственно светодиодом используется . В последнее время наиболее широко для этой цели используются , позволяющие коммутировать значительную мощность (применение для этих целей обычных биполярных транзисторов считается просто неприличным).

Такая потребность, (мощный MOSFET – транзистор) возникает при большом количестве светодиодов, например, при , о которых будет рассказано чуть позже. Если же мощность невелика – при использовании одного – двух светодиодов, можно использовать ключи на маломощных , а при возможности подключать светодиоды непосредственно к выходам микросхем.

На рисунке 2 показана функциональная схема ШИМ – регулятора. В качестве элемента управления на схеме условно показан резистор R2. Вращением его ручки можно в необходимых пределах изменять скважность управляющих импульсов, а, следовательно, яркость светодиодов.

Рисунок 2. Функциональная схема ШИМ – регулятора

На рисунке показаны три цепочки последовательно соединенных светодиодов с ограничивающими резисторами. Примерно такое же соединение применяется в светодиодных лентах. Чем длиннее лента, тем больше светодиодов, тем больше потребляемый ток.

Именно в этих случаях потребуются мощные , допустимый ток стока которых должен быть чуть больше тока, потребляемого лентой. Последнее требование выполняется достаточно легко: например, у транзистора IRL2505 ток стока около 100А, напряжение стока 55В, при этом, его размеры и цена достаточно привлекательны для использования в различных конструкциях.

Задающие генераторы ШИМ

В качестве задающего ШИМ – генератора может использоваться микроконтроллер (в промышленных условиях чаще всего), или схема, выполненная на микросхемах малой степени интеграции. Если в домашних условиях предполагается изготовить незначительное количество ШИМ – регуляторов, а опыта создания микроконтроллерных устройств нет, то лучше сделать регулятор на том, что в настоящее время оказалось под рукой.

Это могут быть логические микросхемы серии К561, интегральный таймер , а также специализированные микросхемы, предназначенные для . В этой роли можно заставить работать даже , собрав на нем регулируемый генератор, но это уж, пожалуй, «из любви к искусству». Поэтому, далее будут рассмотрены только две схемы: самая распространенная на таймере 555, и на контроллере ИБП UC3843.

Схема задающего генератора на таймере 555

Рисунок 3. Схема задающего генератора

Эта схема представляет собой обычный генератор прямоугольных импульсов, частота которого задается конденсатором C1. Заряд конденсатора происходит по цепи «Выход – R2 – RP1- C1 – общий провод». При этом на выходе должно присутствовать напряжение высокого уровня, что равнозначно, что выход соединен с плюсовым полюсом источника питания.

Разряжается конденсатор по цепи «C1 – VD2 – R2 – Выход – общий провод» в то время, когда на выходе присутствует напряжение низкого уровня, – выход соединен с общим проводом. Вот эта разница в путях заряда – разряда времязадающего конденсатора и обеспечивает получение импульсов с регулируемой шириной.

Следует заметить, что диоды, даже одного типа, имеют разные параметры. В данном случае играет роль их электрическая емкость, которая изменяется под действием напряжения на диодах. Поэтому вместе с изменением скважности выходного сигнала меняется и его частота.

Главное, чтобы она не стала меньше критической частоты, о которой было упомянуто чуть выше. Иначе вместо равномерного свечения с различной яркостью будут видны отдельные вспышки.

Приблизительно (опять же виноваты диоды) частоту генератора можно определить по формуле, показанной ниже.

Частота генератора ШИМ на таймере 555.

Если в формулу емкость конденсатора подставить в фарадах, сопротивление в Омах, то результат должен получиться в герцах Гц: от системы СИ никуда не денешься! При этом подразумевается, что движок переменного резистора RP1 находится в среднем положении (в формуле RP1/2), что соответствует выходному сигналу формы меандр. На рисунке 2 это как раз та часть, где указана длительность импульса 50%, что равнозначно сигналу со скважностью 2.

Задающий генератор ШИМ на микросхеме UC3843

Его схема показана на рисунке 4.

Рисунок 4. Схема задающего генератора ШИМ на микросхеме UC3843

Микросхема UC3843 является управляющим ШИМ – контроллером для импульсных блоков питания и применяется, например, в компьютерных источниках формата ATX. В данном случае типовая схема ее включения несколько изменена в сторону упрощения. Для управления шириной выходного импульса на вход схемы подается регулирующее напряжение положительной полярности, то на выходе получается импульсный сигнал ШИМ.

В простейшем случае регулирующее напряжение можно подать с помощью переменного резистора сопротивлением 22…100КОм. При необходимости можно управляющее напряжение получать, например, с аналогового датчика освещенности, выполненного на фоторезисторе: чем темнее за окном, тем светлее в комнате.

Регулирующее напряжение воздействует на выход ШИМ, таким образом, что при его снижении ширина выходного импульса увеличивается, что вовсе не удивительно. Ведь исходное назначение микросхемы UC3843 – стабилизация напряжения блока питания: если выходное напряжение падает, а вместе с ним и регулирующее напряжение, то надо принимать меры (увеличивать ширину выходного импульса) для некоторого повышения выходного напряжения.

Регулирующее напряжение в блоках питания вырабатывается, как правило, с помощью стабилитронов. Чаще всего это или им подобные.

При указанных на схеме номиналах деталей частота генератора около 1КГц, и в отличие от генератора на таймере 555, она при изменении скважности выходного сигнала не «плавает» – забота о постоянстве частоты импульсных блоков питания.

Чтобы регулировать значительную мощность, например, светодиодная лента, к выходу следует подключить ключевой каскад на транзисторе MOSFET, как было показано на рисунке 2.

Можно было бы и побольше рассказать о ШИМ – регуляторах, но пока остановимся на этом, а в следующей статье рассмотрим различные способы подключения светодиодов. Ведь не все способы одинаково хороши, есть такие, которых следует избегать, да и просто ошибок при подключении светодиодов случается предостаточно.

Оцените статью
Добавить комментарий

15 + четыре =