- Схему эффективный импульсный стабилизатор напряжения. Устройство, принцип работы импульсного стабилизатора напряжения
- Принцип работы понижающего импульсного стабилизатора
- Основные параметры
- Специальные функции импульсных стабилизаторов напряжения
- с малым входным напряжением
- Импульсные понижающие стабилизаторы с входным напряжением 10…28 В
- Понижающий импульсный стабилизатор напряжения
- Step-down DC-DC преобразователь напряжения на +5В
- Улучшенный вариант импульсного стабилизатора на +5В
- Схема преобразователя со стабильным напряжением смещения
- DC стабилизатор напряжения с ШИМ
- Импульсный стабилизатор напряжения с КПД преобразования 69…72%
- Импульсный стабилизатор напряжения на 12В
- Принцип работы
- Повышающий стабилизатор
- Стабилизаторы с триггером Шмитта
- Понижающий стабилизатор
- Инвертирующий стабилизатор
- Преимущества и недостатки
- Допустимая частота
- Принцип работы понижающего импульсного стабилизатора
- Основные параметры
- Специальные функции импульсных стабилизаторов напряжения
- с малым входным напряжением
- Импульсные понижающие стабилизаторы с входным напряжением 10…28 В
- Список радиоэлементов
Схему эффективный импульсный стабилизатор напряжения. Устройство, принцип работы импульсного стабилизатора напряжения
Работа практически любой электронной схемы требует наличия одного или нескольких источников постоянного напряжения, причем в подавляющем большинстве случаев используется стабилизированное напряжение. В стабилизированных источниках питания применяются либо линейные, либо импульсные стабилизаторы. Каждый тип преобразователей имеет свои достоинства и, соответственно, свою нишу в схемах электропитания. К несомненным достоинствам импульсных стабилизаторов относятся более высокие значения коэффициента полезного действия, возможность получения высоких значений выходного тока и высокая эффективность при большой разнице между значениями входного и выходного напряжений.
Принцип работы понижающего импульсного стабилизатора
На рисунке 1 представлена упрощенная схема силовой части ИПСН.
Рис. 1.
Полевой транзистор VT осуществляет высокочастотную коммутацию тока. В импульсных стабилизаторах транзистор работает в ключевом режиме, то есть может находиться в одном из двух стабильных состояний: полной проводимости и отсечки. Соответственно, работа ИПСН состоит из двух сменяющих друг друга фаз — фазы накачки энергии (когда транзистор VT открыт) и фазы разряда (когда транзистор закрыт). Работа ИПСН иллюстрируется рисунком 2.
Рис. 2. Принцип работы ИПСН: а) фаза накачки; б) фаза разряда; в) временные диаграммы
Фаза накачки энергии продолжается на протяжении интервала времени Т И. В это время ключ замкнут и проводит ток I VT . Далее ток проходит через дроссель L к нагрузке R, шунтированной выходным конденсатором C OUT . В первой части фазы конденсатор отдает ток I C в нагрузку, а во второй половине — отбирает часть тока I L от нагрузки. Величина тока I L непрерывно увеличивается, и происходит накопление энергии в дросселе L, а во второй части фазы — и на конденсаторе C OUT . Напряжение на диоде V D равно U IN (за вычетом падения напряжения на открытом транзисторе), и диод на протяжении этой фазы закрыт — ток через него не протекает. Ток I R , протекающий через нагрузку R, постоянен (разность I L — I C), соответственно, напряжение U OUT на выходе также постоянно.
Фаза разряда протекает в течение времени Т П: ключ разомкнут и ток через него не протекает. Известно, что ток, протекающий через дроссель, не может измениться мгновенно. Ток IL, постоянно уменьшаясь, протекает через нагрузку и замыкается через диод V D . В первой части этой фазы конденсатор C OUT продолжает накапливать энергию, отбирая часть тока I L от нагрузки. Во второй половине фазы разряда конденсатор тоже начинает отдавать ток в нагрузку. На протяжении этой фазы ток I R , протекающий через нагрузку, также постоянен. Следовательно, напряжение на выходе также стабильно.
Основные параметры
В первую очередь отметим, что по функциональному исполнению различают ИПСН с регулируемым и с фиксированным выходным напряжением. Типичные схемы включения обоих типов ИПСН представлены на рисунке 3. Различие между ними заключается в том, что в первом случае резисторный делитель, определяющий значение выходного напряжения, находится вне интегральной схемы, а во втором — внутри. Соответственно, в первом случае значение выходного напряжения задается пользователем, а во втором — устанавливается при изготовлении микросхемы.
Рис. 3. Типичная схема включения ИПСН: а) с регулируемым и б) с фиксированным выходным напряжением
К важнейшим параметрам ИПСН относят:
- Диапазон допустимых значений входного напряжения U IN_MIN …U IN_MAX .
- Максимальное значение выходного тока (тока в нагрузке) I OUT_MAX .
- Номинальное значение выходного напряжения U OUT (для ИПСН с фиксированным значением выходного напряжения) или диапазон значений выходного напряжения U OUT_MIN …U OUT_MAX (для ИПСН с регулируемым значением выходного напряжения). Часто в справочных материалах указывается, что максимальное значение выходного напряжения U OUT_MAX равно максимальному значению входного напряжения U IN_MAX . В действительности это не совсем так. В любом случае выходное напряжение меньше входного, как минимум, на величину падения напряжения на ключевом транзисторе U DROP . При значении выходного тока, равного, например, 3А, величина U DROP составит 0,1…1,0В (в зависимости от выбранной микросхемы ИПСН). Примерное равенство U OUT_MAX и U IN_MAX возможно только при очень малых значениях тока нагрузки. Отметим также, что и сам процесс стабилизации выходного напряжения предполагает потерю нескольких процентов входного напряжения. Декларируемое равенство U OUT_MAX и U IN_MAX следует понимать только в том смысле, что других причин снижения U OUT_MAX , кроме тех, что указаны выше в конкретном изделии, не существует (в частности, нет явных ограничений на максимальную величину коэффициента заполнения D). В качестве U OUT_MIN обычно указывают значение напряжения обратной связи U FB . В реальности U OUT_MIN всегда должно быть на несколько процентов выше (из тех же соображений стабилизации).
- Точность установления выходного напряжения. Задается в процентах. Имеет смысл только в случае ИПСН с фиксированным значением выходного напряжения, поскольку в этом случае резисторы делителя напряжения находятся внутри микросхемы, а их точность является параметром, контролируемым при изготовлении. В случае ИПСН с регулируемым значением выходного напряжения параметр теряет смысл, поскольку точность резисторов делителя выбирается пользователем. В этом случае можно говорить только о величине колебаний выходного напряжения относительно некоторого среднего значения (точность отработки сигнала обратной связи). Напомним, что в любом случае этот параметр для импульсных стабилизаторов напряжения в 3…5 раз хуже по сравнению с линейными стабилизаторами.
- Падение напряжения на открытом транзисторе R DS_ON . Как уже отмечалось, с этим параметром связано неизбежное уменьшение напряжения на выходе по отношению к входному напряжению. Но важнее другое- чем выше значение сопротивления открытого канала, тем большая часть энергии рассеивается в виде тепла. Для современных микросхем ИПСН хорошим значением являются величины до 300мОм. Более высокие значения характерны для микросхем, разработанных не менее чем пять лет назад. Заметим также, что значение R DS_ON не является константой, а зависит от величины выходного тока I OUT .
- Длительность рабочего цикла Т и частота коммутации F SW . Длительность рабочего цикла Т определяется как сумма интервалов Т И (длительность импульса) и Т П (длительность паузы). Соответственно, частота F SW — величина, обратная длительности рабочего цикла. Для некоторой части ИПСН частота коммутации — величина постоянная, определяемая внутренними элементами интегральной схемы. Для другой части ИПСН частота коммутации задается внешними элементами (как правило, внешней RC-цепью), в этом случае определяется диапазон допустимых частот F SW_MIN …F SW_MAX . Более высокая частота коммутации позволяет применять дроссели с меньшим значением индуктивности, что положительно сказывается и на габаритах изделия, и на его цене. В большинстве ИСПН используется ШИМ-регулирование, то есть величина Т постоянна, а в процессе стабилизации регулируется величина Т И. Существенно реже используется частотно-импульсная модуляция (ЧИМ-регулирование). В этом случае величина Т И постоянна, а стабилизация осуществляется за счет изменения длительности паузы Т П. Таким образом величины Т и, соответственно, F SW становятся переменными. В справочных материалах в этом случае, как правило, задается частота, соответствующая скважности, равной 2. Отметим, что следует отличать диапазон частот F SW_MIN …F SW_MAX регулируемой частоты от «ворот» допуска на фиксированную частоту, поскольку величина допуска часто указывается в справочных материалах производителя.
- Коэффициент заполнения D, который равен процентно
му отношению Т И к Т. Часто в справочных материалах указывают «до 100%». Очевидно, что это преувеличение, поскольку если ключевой транзистор постоянно открыт, то отсутствует процесс стабилизации. В большинстве моделей, выпущенных на рынок примерно до 2005-го года, из-за ряда технологических ограничений значение этого коэффициента было ограничено сверху величиной 90%. В современных моделях ИПСН большая часть этих ограничений преодолена, но фразу «до 100%» не следует понимать дословно. - Коэффициент полезного действия (или эффективность). Как известно, для линейных стабилизаторов (принципиально понижающих) это процентное отношение выходного напряжения ко входному, поскольку величины входного и выходного тока почти равны. Для импульсных стабилизаторов входной и выходной токи могут существенно отличаться, поэтому в качестве КПД берется процентное отношение выходной мощности ко входной. Строго говоря, для одной и той же микросхемы ИПСН значение этого коэффициента может существенно отличаться в зависимости от соотношения значений входного и выходного напряжения, величины тока в нагрузке и частоты коммутации. Для большинства ИПСН максимум КПД достигается при значении тока в нагрузке порядка 20…30% от максимально допустимого значения, поэтому численное значение не очень информативно. Целесообразнее пользоваться графиками зависимости, которые приводятся в справочных материалах производителя. На рисунке4 в качестве примера приведены графики эффективности для стабилизатора .
Очевидно, что использование высоковольтного стабилизатора при невысоких реальных значениях входного напряжения не является хорошим решением, поскольку значение КПД существенно падает при приближении тока в нагрузке к максимальному значению. Вторая группа графиков иллюстрирует более предпочтительный режим, поскольку значение эффективности слабо зависит от колебаний выходного тока. Критерием правильного выбора преобразователя является даже не столько численное значение КПД, сколько именно плавность графика функции от тока в нагрузке (отсутствие «завала» в области больших токов).
Рис. 4.
Приведенным перечнем весь список параметров ИПСН не исчерпывается. С менее значимыми параметрами можно ознакомиться в литературе .
Специальные функции
импульсных стабилизаторов напряжения
В большинстве случаев ИПСН имеют ряд дополнительных функций, расширяющих возможности их практического применения. Наиболее часто встречаются следующие:
- Вход отключения нагрузки «On/Off» или «Shutdown» позволяет разомкнуть ключевой транзистор и, таким образом, отключить напряжение от нагрузки. Как правило, используется для дистанционного управления группой стабилизаторов, реализуя определенный алгоритм подачи и отключения отдельных напряжений в системе электропитания. Кроме того, может применяться как вход для аварийного выключения питания при нештатной ситуации.
- Выход нормального состояния «Power Good»- обобщающий выходной сигнал, подтверждающий, что ИПСН находится в нормальном рабочем состоянии. Активный уровень сигнала формируется после завершения переходных процессов от подачи входного напряжения и, как правило, используется или в качестве признака исправности ИПСН, или для запуска следующих ИСПН в последовательных системах электропитания. Причины, по которым этот сигнал может быть сброшен: падение входного напряжения ниже определенного уровня, выход выходного напряжения за определенные рамки, отключение нагрузки по сигналу Shutdown, превышение максимального значения тока в нагрузке (в частности, факт короткого замыкания), температурное отключение нагрузки и некоторые другие. Факторы, которые учитываются при формировании этого сигнала, зависят от конкретной модели ИПСН.
- Вывод внешней синхронизации «Sync» обеспечивает возможность синхронизации внутреннего генератора с внешним синхросигналом. Используется для организации совместной синхронизации нескольких стабилизаторов в сложных системах электропитания. Отметим, что частота внешнего синхросигнала не обязательно должна совпадать с собственной частотой FSW, однако, она должна лежать в допустимых пределах, оговоренных в материалах производителя.
- Функция плавного старта «Soft Start» обеспечивает относительно медленное нарастание выходного напряжения при подаче напряжения на вход ИПСН или при включении по заднему фронту сигнала Shutdown. Данная функция позволяет снизить броски тока в нагрузке при включении микросхемы. Параметры работы схемы плавного старта чаще всего являются фиксированными и определяются внутренними компонентами стабилизатора. В некоторых моделях ИПСН присутствует специальный вывод Soft Start. В этом случае параметры запуска определяются номиналами внешних элементов (резистор, конденсатор, RC-цепь), подключенных к данному выводу.
- Температурная защита предназначена для предотвращения выхода из строя микросхемы в случае перегрева кристалла. Повышение температуры кристалла (независимо от причины) выше определенного уровня вызывает срабатывание защитного механизма — снижение тока в нагрузке или ее полное отключение. Это предотвращает дальнейшее повышение температуры кристалла и повреждение микросхемы. Возврат схемы в режим стабилизации напряжения возможен только после остывания микросхемы. Отметим, что температурная защита реализована в подавляющем большинстве современных микросхем ИПСН, однако отдельная индикация именно этого состояния не предусмотрена. Инженеру предстоит самому догадаться, что причиной отключения нагрузки является именно срабатывание температурной защиты.
- Защита по току заключается либо в ограничении величины тока, протекающего через нагрузку, либо в отключении нагрузки. Защита срабатывает, если сопротивление нагрузки оказывается слишком малым (например, имеет место короткое замыкание), а ток превышает определенное пороговое значение, что может привести к выходу микросхемы из строя. Как и в предыдущем случае, диагностика этого состояния является заботой инженера.
Последнее замечание, касающееся параметров и функций ИПСН. На рисунках 1 и 2 присутствует разрядный диод V D . В довольно старых стабилизаторах этот диод реализован именно как внешний кремниевый. Недостатком такого схемотехнического решения было высокое падение напряжения (примерно 0,6 В) на диоде в открытом состоянии. В более поздних схемах использовался диод Шоттки, падение напряжения на котором составляло примерно 0,3 В. В разработках последних пяти лет эти решения используются только для высоковольтных преобразователей. В большинстве современных изделий разрядный диод выполняется в виде внутреннего полевого транзистора, работающего в противофазе с ключевым транзистором. В этом случае падение напряжения определяется сопротивлением открытого канала и при небольших токах нагрузки дает дополнительный выигрыш. Стабилизаторы, использующие это схемотехническое решение, называются синхронными. Обратим внимание, что возможность работы от внешнего синхросигнала и термин «синхронный» не связаны никаким образом.
с малым входным напряжением
Учитывая тот факт, что в номенклатуре STMicroelectronics присутствует примерно 70 типов ИПСН с встроенным ключевым транзистором, имеет смысл систематизировать все многообразие. Если в качестве критерия взять такой параметр, как максимальное значение входного напряжения, то можно выделить четыре группы:
1. ИПСН с малым входным напряжением (6 В и менее);
2. ИПСН с входным напряжением 10…28 В;
3. ИПСН с входным напряжением 36…38 В;
4. ИПСН с высоким входным напряжением (46 В и выше).
Параметры стабилизаторов первой группы приведены в таблице 1.
Таблица 1. ИПСН с малым входным напряжением
Наименование
| Вых. ток, A
| Входное напряжение, В | Выходное напряжение, В | КПД, %
| Частота коммутации, кГц | Функции и флаги
| ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I OUT
| V IN
| V OUT
| h | F SW
| R DSON
| On/Off
| Sync. Pin
| Soft Start
| Pow Good
| |||
Макс
| Мин
| Макс
| Мин
| Макс
| Макс
| Тип
| ||||||
L6925D
| 0,8 | 2,7 | 5,5 | 0,6 | 5,5 | 95 | 600 | 240 | + | + | + | + |
L6926
| 0,8 | 2,0 | 5,5 | 0,6 | 5,5 | 95 | 600 | 240 | + | + | + | + |
L6928
| 0,8 | 2,0 | 5,5 | 0,6 | 5,5 | 95 | 1450 | 240 | + | + | + | + |
PM8903A
| 3,0 | 2,8 | 6,0 | 0,6 | 6,0 | 96 | 1100 | 35 | + | + | + | + |
ST1S06A
| 1,5 | 2,7 | 6,0 | 0,8 | 5,0 | 92 | 1500 | 150 | + | – | + | – |
ST1S09
| 2,0 | 4,5 | 5,5 | 0,8 | 5,0 | 95 | 1500 | 100 | * | – | + | + |
ST1S12
| 0,7 | 2,5 | 5,5 | 0,6 | 5,0 | 92 | 1700 | 250 | + | + | – | |
ST1S15
| 0,5 | 2,3 | 5,5 | Фикс. 1,82 и 2,8 В | 90 | 6000 | 350 | + | – | + | – | |
ST1S30
| 3,0 | 2,7 | 6,0 | 0,8 | 5,0 | 85 | 1500 | 100 | * | – | + | + |
ST1S31
| 3,0 | 2,8 | 5,5 | 0,8 | 5,5 | 95 | 1500 | 60 | + | – | + | – |
ST1S32
| 4,0 | 2,8 | 5,5 | 0,8 | 5,5 | 95 | 1500 | 60 | + | – | + | – |
* – функция присутствует не для всех исполнений. |
Еще в 2005 году линейка стабилизаторов этого типа была неполной. Она ограничивалась микросхемами . Эти микросхемы обладали хорошими характеристиками: высокой точностью и КПД, отсутствием ограничений на значение коэффициента заполнения, возможностью регулировки частоты при работе от внешнего синхросигнала, приемлемым значением R DSON . Все это делает данные изделия востребованными и в настоящее время. Существенный недостаток — невысокие значения максимального выходного тока. Стабилизаторы на токи нагрузки от 1 А и выше в линейке низковольтных ИПСН компании STMicroelectronics отсутствовали. В дальнейшем этот пробел был ликвидирован: сначала появились стабилизаторы на 1,5 и 2 А ( и ), а в последние годы — на 3 и 4 А ( ,
и ). Кроме повышения выходного тока, увеличилась частота коммутации, снизилось значение сопротивления открытого канала, что положительно сказалось на потребительских свойствах конечных изделий. Отметим также появление микросхем ИПСН с фиксированным выходным напряжением ( и ) — в линейке STMicroelectronics таких изделий не очень много. Последняя новинка — со значением RDSON в 35 мОм — это один из лучших показателей в отрасли, что в сочетании с широкими функциональными возможностями обещает этому изделию хорошие перспективы.
Основная область применения изделий данного типа — мобильные устройства с батарейным питанием. Широкий диапазон входного напряжения обеспечивает устойчивую работу аппаратуры при различных уровнях заряда аккумуляторной батареи, а высокий КПД минимизирует преобразование входной энергии в тепло. Последнее обстоятельство определяет преимущества импульсных стабилизаторов по сравнению с линейными именно в этой области пользовательских приложений.
В целом, данная группа у компании STMicroelectronics развивается достаточно динамично — примерно половина всей линейки появилась на рынке в последние 3-4 года.
Импульсные понижающие стабилизаторы
с входным напряжением 10…28 В
Параметры преобразователей этой группы приведены в таблице 2.
Таблица 2. ИПСН со входным напряжением 10…28 В
Наименование
| Вых. ток, A
| Входное напряжение, В | Выходное напряжение, В | КПД, %
| Частота коммутации, кГц | Сопротивление открытого канала, мОм | Функции и флаги
| |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I OUT
| V IN
| V OUT
| h | F SW
| R DSON
| On/Off
| Sync. Pin
| Soft Start
| Pow Good
| |||
Макс
| Мин
| Макс
| Мин
| Макс
| Макс
| Тип
| ||||||
L5980
| 0,7 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5981
| 1,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5983
| 1,5 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5985
| 2,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5986
| 2,5 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5987
| 3,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5988D
| 4,0 | 2,9 | 18,0 | 0,6 | 18,0 | 95 | 400…1000 | 120 | + | + | + | – |
L5989D
| 4,0 | 2,9 | 18,0 | 0,6 | 18,0 | 95 | 400…1000 | 120 | + | – | + | + |
L7980
| 2,0 | 4,5 | 28,0 | 0,6 | 28,0 | 93 | 250…1000 | 160 | + | + | + | – |
L7981
| 3,0 | 4,5 | 28,0 | 0,6 | 28,0 | 93 | 250…1000 | 160 | + | + | + | – |
ST1CC40
| 2,0 | 3,0 | 18,0 | 0,1 | 18,0 | н.д. | 850 | 95 | + | – | + | – |
ST1S03
| 1,5 | 2,7 | 16,0 | 0,8 | 12,0 | 79 | 1500 | 280 | – | – | + | – |
ST1S10
| 3,0 | 2,7 | 18,0 | 0,8 | 16,0 | 95 | 900 | 120 | + | + | + | – |
ST1S40
| 3,0 | 4,0 | 18,0 | 0,8 | 18,0 | 95 | 850 | 95 | + | – | + | – |
ST1S41
| 4,0 | 4,0 | 18,0 | 0,8 | 18,0 | 95 | 850 | 95 | + | – | + | – |
ST763AC
| 0,5 | 3,3 | 11,0 | Фикс. 3,3 | 90 | 200 | 1000 | + | – | + | – |
Восемь лет назад данная группа была представлена только микросхемами ,
и с входным напряжением до 11 В. Диапазон от 16 до 28 В оставался не заполненным. Из всех перечисленных модификаций в настоящее время в линейке присутствует только ,
но параметры этого ИПСН современным требованиям соответствуют слабо. Можно считать, что за это время номенклатура рассматриваемой группы обновлена полностью.
В настоящее время база данной группы — микросхемы .
Данная линейка рассчитана на весь диапазон токов нагрузки от 0,7 до 4 А, обеспечивает полный комплект специальных функций, частота коммутации регулируется в достаточно широких пределах, отсутствуют ограничения на значение коэффициента заполнения, значения КПД и сопротивления открытого канала отвечают современным требованиям. Существенных минусов в данной серии два. Во-первых, отсутствует встроенный разрядный диод (кроме микросхем с суффиксом D). Точность регулирования выходного напряжения достаточно высока (2%), но наличие трех и более внешних элементов в цепи компенсации обратной связи нельзя отнести к достоинствам. Микросхемы и отличаются от серии L598x только иным диапазоном входных напряжений, но схемотехника, а, следовательно, достоинства и недостатки аналогичны семейству L598x. В качестве примера на рисунке 5 представлена типовая схема включения трехамперной микросхемы . Присутствует и разрядный диод D, и элементы цепи компенсации R4, C4 и C5. Входы F SW и SYNCH остаются свободными, следовательно, преобразователь работает от внутреннего генератора с частотой F SW , заданной по умолчанию.
Схемы самодельных импульсных DC-DC преобразователей напряжения на транзисторах, семь примеров.
Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов.
Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.
Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.
Понижающий импульсный стабилизатор напряжения
Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.
Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.
Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.
Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.
В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа.
Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия.
После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.
Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.
Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.
Step-down DC-DC преобразователь напряжения на +5В
Схема простого импульсного стабилизатора показана на рис. 2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ.
Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм.
Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм.
Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.
Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.
Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5…7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18…20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.
Выходное напряжение стабилизатора можно довести до 8…10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.
В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.
Основные технические характеристики:
- Входное напряжение, В — 15…25.
- Выходное напряжение, В — 5.
- Максимальный ток нагрузки, А — 4.
- Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.
- КПД, %, не ниже — 60.
- Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц–20.
Улучшенный вариант импульсного стабилизатора на +5В
В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.
Рис. 3. Схема импульсного стабилизатора напряжения.
Оказалось, что при работе прототипа (рис. 2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.
Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 2) был введен дополнительный выходной LC-фильтр (L2, С5).
Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2.
Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.
Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5… 10 раз (параллельным соединением нескольких конденсаторов в батарею).
Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.
Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт).
Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно быть уменьшено до 620 Ом.
Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор.
Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной.
Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.
Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.
Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается.
Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5…2 раза превышает минимально достижимое значение.
Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 3).
Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.
Схема преобразователя со стабильным напряжением смещения
Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1.
Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).
Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.
Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.
В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ.
Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35.
Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.
DC стабилизатор напряжения с ШИМ
Стабилизатор с широтно-импульсным управлением (рис. 5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.
При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1.
Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.
Рис. 5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.
Технические характеристики стабилизатора:
- Входное напряжение — 15…25 В.
- Выходное напряжение — 12 В.
- Номинальный ток загрузки — 1 А.
- Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.
- Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.
- Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.
По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.
Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.
При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента.
Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40×25 мм.
Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.
Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.
Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 2.
Импульсный стабилизатор напряжения с КПД преобразования 69…72%
Импульсный стабилизатор напряжения (рис. 6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3…48 кГц.
Рис. 6. Схема импульсного стабилизатора напряжения с КПД преобразования 69…72%.
Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.
Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69…72%. Коэффициент стабилизации — 500.
Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.
Импульсный стабилизатор напряжения на 12В
Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20…25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А.
Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.
Рис. 7. Схема импульсного стабилизатора напряжения с малыми пульсациями.
Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.
Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.
Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.
Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.
Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.
В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.
На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.
Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:
- Ти – продолжительность периода.
- tи – продолжительность импульса.
- Rн – значение сопротивления потребителя, Ом.
- I(t) – значение тока, проходящего по нагрузке, ампер.
Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.
При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.
Принцип работы
В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.
Схема основных частей стабилизатора напряжения показана на рисунке.
Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.
При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.
Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.
При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.
Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.
Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.
Повышающий стабилизатор
Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:
Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.
Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.
В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.
Стабилизаторы с триггером Шмитта
Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.
Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.
Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.
Понижающий стабилизатор
Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.
Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.
Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.
При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.
Инвертирующий стабилизатор
Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.
Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.
Преимущества и недостатки
Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:
- Простое достижение выравнивания.
- Плавное подключение.
- Компактные размеры.
- Устойчивость выходного напряжения.
- Широкий интервал стабилизации.
- Повышенный КПД.
Недостатки прибора:
- Сложная конструкция.
- Много специфических компонентов, снижающих надежность устройства.
- Необходимость в использовании компенсирующих устройств мощности.
- Сложность работ по ремонту.
- Образование большого количества помех частоты.
Допустимая частота
Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.
Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.
Работа практически любой электронной схемы требует наличия одного или нескольких источников постоянного напряжения, причем в подавляющем большинстве случаев используется стабилизированное напряжение. В стабилизированных источниках питания применяются либо линейные, либо импульсные стабилизаторы. Каждый тип преобразователей имеет свои достоинства и, соответственно, свою нишу в схемах электропитания. К несомненным достоинствам импульсных стабилизаторов относятся более высокие значения коэффициента полезного действия, возможность получения высоких значений выходного тока и высокая эффективность при большой разнице между значениями входного и выходного напряжений.
Принцип работы понижающего импульсного стабилизатора
На рисунке 1 представлена упрощенная схема силовой части ИПСН.
Рис. 1.
Полевой транзистор VT осуществляет высокочастотную коммутацию тока. В импульсных стабилизаторах транзистор работает в ключевом режиме, то есть может находиться в одном из двух стабильных состояний: полной проводимости и отсечки. Соответственно, работа ИПСН состоит из двух сменяющих друг друга фаз — фазы накачки энергии (когда транзистор VT открыт) и фазы разряда (когда транзистор закрыт). Работа ИПСН иллюстрируется рисунком 2.
Рис. 2. Принцип работы ИПСН: а) фаза накачки; б) фаза разряда; в) временные диаграммы
Фаза накачки энергии продолжается на протяжении интервала времени Т И. В это время ключ замкнут и проводит ток I VT . Далее ток проходит через дроссель L к нагрузке R, шунтированной выходным конденсатором C OUT . В первой части фазы конденсатор отдает ток I C в нагрузку, а во второй половине — отбирает часть тока I L от нагрузки. Величина тока I L непрерывно увеличивается, и происходит накопление энергии в дросселе L, а во второй части фазы — и на конденсаторе C OUT . Напряжение на диоде V D равно U IN (за вычетом падения напряжения на открытом транзисторе), и диод на протяжении этой фазы закрыт — ток через него не протекает. Ток I R , протекающий через нагрузку R, постоянен (разность I L — I C), соответственно, напряжение U OUT на выходе также постоянно.
Фаза разряда протекает в течение времени Т П: ключ разомкнут и ток через него не протекает. Известно, что ток, протекающий через дроссель, не может измениться мгновенно. Ток IL, постоянно уменьшаясь, протекает через нагрузку и замыкается через диод V D . В первой части этой фазы конденсатор C OUT продолжает накапливать энергию, отбирая часть тока I L от нагрузки. Во второй половине фазы разряда конденсатор тоже начинает отдавать ток в нагрузку. На протяжении этой фазы ток I R , протекающий через нагрузку, также постоянен. Следовательно, напряжение на выходе также стабильно.
Основные параметры
В первую очередь отметим, что по функциональному исполнению различают ИПСН с регулируемым и с фиксированным выходным напряжением. Типичные схемы включения обоих типов ИПСН представлены на рисунке 3. Различие между ними заключается в том, что в первом случае резисторный делитель, определяющий значение выходного напряжения, находится вне интегральной схемы, а во втором — внутри. Соответственно, в первом случае значение выходного напряжения задается пользователем, а во втором — устанавливается при изготовлении микросхемы.
Рис. 3. Типичная схема включения ИПСН: а) с регулируемым и б) с фиксированным выходным напряжением
К важнейшим параметрам ИПСН относят:
- Диапазон допустимых значений входного напряжения U IN_MIN …U IN_MAX .
- Максимальное значение выходного тока (тока в нагрузке) I OUT_MAX .
- Номинальное значение выходного напряжения U OUT (для ИПСН с фиксированным значением выходного напряжения) или диапазон значений выходного напряжения U OUT_MIN …U OUT_MAX (для ИПСН с регулируемым значением выходного напряжения). Часто в справочных материалах указывается, что максимальное значение выходного напряжения U OUT_MAX равно максимальному значению входного напряжения U IN_MAX . В действительности это не совсем так. В любом случае выходное напряжение меньше входного, как минимум, на величину падения напряжения на ключевом транзисторе U DROP . При значении выходного тока, равного, например, 3А, величина U DROP составит 0,1…1,0В (в зависимости от выбранной микросхемы ИПСН). Примерное равенство U OUT_MAX и U IN_MAX возможно только при очень малых значениях тока нагрузки. Отметим также, что и сам процесс стабилизации выходного напряжения предполагает потерю нескольких процентов входного напряжения. Декларируемое равенство U OUT_MAX и U IN_MAX следует понимать только в том смысле, что других причин снижения U OUT_MAX , кроме тех, что указаны выше в конкретном изделии, не существует (в частности, нет явных ограничений на максимальную величину коэффициента заполнения D). В качестве U OUT_MIN обычно указывают значение напряжения обратной связи U FB . В реальности U OUT_MIN всегда должно быть на несколько процентов выше (из тех же соображений стабилизации).
- Точность установления выходного напряжения. Задается в процентах. Имеет смысл только в случае ИПСН с фиксированным значением выходного напряжения, поскольку в этом случае резисторы делителя напряжения находятся внутри микросхемы, а их точность является параметром, контролируемым при изготовлении. В случае ИПСН с регулируемым значением выходного напряжения параметр теряет смысл, поскольку точность резисторов делителя выбирается пользователем. В этом случае можно говорить только о величине колебаний выходного напряжения относительно некоторого среднего значения (точность отработки сигнала обратной связи). Напомним, что в любом случае этот параметр для импульсных стабилизаторов напряжения в 3…5 раз хуже по сравнению с линейными стабилизаторами.
- Падение напряжения на открытом транзисторе R DS_ON . Как уже отмечалось, с этим параметром связано неизбежное уменьшение напряжения на выходе по отношению к входному напряжению. Но важнее другое- чем выше значение сопротивления открытого канала, тем большая часть энергии рассеивается в виде тепла. Для современных микросхем ИПСН хорошим значением являются величины до 300мОм. Более высокие значения характерны для микросхем, разработанных не менее чем пять лет назад. Заметим также, что значение R DS_ON не является константой, а зависит от величины выходного тока I OUT .
- Длительность рабочего цикла Т и частота коммутации F SW . Длительность рабочего цикла Т определяется как сумма интервалов Т И (длительность импульса) и Т П (длительность паузы). Соответственно, частота F SW — величина, обратная длительности рабочего цикла. Для некоторой части ИПСН частота коммутации — величина постоянная, определяемая внутренними элементами интегральной схемы. Для другой части ИПСН частота коммутации задается внешними элементами (как правило, внешней RC-цепью), в этом случае определяется диапазон допустимых частот F SW_MIN …F SW_MAX . Более высокая частота коммутации позволяет применять дроссели с меньшим значением индуктивности, что положительно сказывается и на габаритах изделия, и на его цене. В большинстве ИСПН используется ШИМ-регулирование, то есть величина Т постоянна, а в процессе стабилизации регулируется величина Т И. Существенно реже используется частотно-импульсная модуляция (ЧИМ-регулирование). В этом случае величина Т И постоянна, а стабилизация осуществляется за счет изменения длительности паузы Т П. Таким образом величины Т и, соответственно, F SW становятся переменными. В справочных материалах в этом случае, как правило, задается частота, соответствующая скважности, равной 2. Отметим, что следует отличать диапазон частот F SW_MIN …F SW_MAX регулируемой частоты от «ворот» допуска на фиксированную частоту, поскольку величина допуска часто указывается в справочных материалах производителя.
- Коэффициент заполнения D, который равен процентно
му отношению Т И к Т. Часто в справочных материалах указывают «до 100%». Очевидно, что это преувеличение, поскольку если ключевой транзистор постоянно открыт, то отсутствует процесс стабилизации. В большинстве моделей, выпущенных на рынок примерно до 2005-го года, из-за ряда технологических ограничений значение этого коэффициента было ограничено сверху величиной 90%. В современных моделях ИПСН большая часть этих ограничений преодолена, но фразу «до 100%» не следует понимать дословно. - Коэффициент полезного действия (или эффективность). Как известно, для линейных стабилизаторов (принципиально понижающих) это процентное отношение выходного напряжения ко входному, поскольку величины входного и выходного тока почти равны. Для импульсных стабилизаторов входной и выходной токи могут существенно отличаться, поэтому в качестве КПД берется процентное отношение выходной мощности ко входной. Строго говоря, для одной и той же микросхемы ИПСН значение этого коэффициента может существенно отличаться в зависимости от соотношения значений входного и выходного напряжения, величины тока в нагрузке и частоты коммутации. Для большинства ИПСН максимум КПД достигается при значении тока в нагрузке порядка 20…30% от максимально допустимого значения, поэтому численное значение не очень информативно. Целесообразнее пользоваться графиками зависимости, которые приводятся в справочных материалах производителя. На рисунке4 в качестве примера приведены графики эффективности для стабилизатора .
Очевидно, что использование высоковольтного стабилизатора при невысоких реальных значениях входного напряжения не является хорошим решением, поскольку значение КПД существенно падает при приближении тока в нагрузке к максимальному значению. Вторая группа графиков иллюстрирует более предпочтительный режим, поскольку значение эффективности слабо зависит от колебаний выходного тока. Критерием правильного выбора преобразователя является даже не столько численное значение КПД, сколько именно плавность графика функции от тока в нагрузке (отсутствие «завала» в области больших токов).
Рис. 4.
Приведенным перечнем весь список параметров ИПСН не исчерпывается. С менее значимыми параметрами можно ознакомиться в литературе .
Специальные функции
импульсных стабилизаторов напряжения
В большинстве случаев ИПСН имеют ряд дополнительных функций, расширяющих возможности их практического применения. Наиболее часто встречаются следующие:
- Вход отключения нагрузки «On/Off» или «Shutdown» позволяет разомкнуть ключевой транзистор и, таким образом, отключить напряжение от нагрузки. Как правило, используется для дистанционного управления группой стабилизаторов, реализуя определенный алгоритм подачи и отключения отдельных напряжений в системе электропитания. Кроме того, может применяться как вход для аварийного выключения питания при нештатной ситуации.
- Выход нормального состояния «Power Good»- обобщающий выходной сигнал, подтверждающий, что ИПСН находится в нормальном рабочем состоянии. Активный уровень сигнала формируется после завершения переходных процессов от подачи входного напряжения и, как правило, используется или в качестве признака исправности ИПСН, или для запуска следующих ИСПН в последовательных системах электропитания. Причины, по которым этот сигнал может быть сброшен: падение входного напряжения ниже определенного уровня, выход выходного напряжения за определенные рамки, отключение нагрузки по сигналу Shutdown, превышение максимального значения тока в нагрузке (в частности, факт короткого замыкания), температурное отключение нагрузки и некоторые другие. Факторы, которые учитываются при формировании этого сигнала, зависят от конкретной модели ИПСН.
- Вывод внешней синхронизации «Sync» обеспечивает возможность синхронизации внутреннего генератора с внешним синхросигналом. Используется для организации совместной синхронизации нескольких стабилизаторов в сложных системах электропитания. Отметим, что частота внешнего синхросигнала не обязательно должна совпадать с собственной частотой FSW, однако, она должна лежать в допустимых пределах, оговоренных в материалах производителя.
- Функция плавного старта «Soft Start» обеспечивает относительно медленное нарастание выходного напряжения при подаче напряжения на вход ИПСН или при включении по заднему фронту сигнала Shutdown. Данная функция позволяет снизить броски тока в нагрузке при включении микросхемы. Параметры работы схемы плавного старта чаще всего являются фиксированными и определяются внутренними компонентами стабилизатора. В некоторых моделях ИПСН присутствует специальный вывод Soft Start. В этом случае параметры запуска определяются номиналами внешних элементов (резистор, конденсатор, RC-цепь), подключенных к данному выводу.
- Температурная защита предназначена для предотвращения выхода из строя микросхемы в случае перегрева кристалла. Повышение температуры кристалла (независимо от причины) выше определенного уровня вызывает срабатывание защитного механизма — снижение тока в нагрузке или ее полное отключение. Это предотвращает дальнейшее повышение температуры кристалла и повреждение микросхемы. Возврат схемы в режим стабилизации напряжения возможен только после остывания микросхемы. Отметим, что температурная защита реализована в подавляющем большинстве современных микросхем ИПСН, однако отдельная индикация именно этого состояния не предусмотрена. Инженеру предстоит самому догадаться, что причиной отключения нагрузки является именно срабатывание температурной защиты.
- Защита по току заключается либо в ограничении величины тока, протекающего через нагрузку, либо в отключении нагрузки. Защита срабатывает, если сопротивление нагрузки оказывается слишком малым (например, имеет место короткое замыкание), а ток превышает определенное пороговое значение, что может привести к выходу микросхемы из строя. Как и в предыдущем случае, диагностика этого состояния является заботой инженера.
Последнее замечание, касающееся параметров и функций ИПСН. На рисунках 1 и 2 присутствует разрядный диод V D . В довольно старых стабилизаторах этот диод реализован именно как внешний кремниевый. Недостатком такого схемотехнического решения было высокое падение напряжения (примерно 0,6 В) на диоде в открытом состоянии. В более поздних схемах использовался диод Шоттки, падение напряжения на котором составляло примерно 0,3 В. В разработках последних пяти лет эти решения используются только для высоковольтных преобразователей. В большинстве современных изделий разрядный диод выполняется в виде внутреннего полевого транзистора, работающего в противофазе с ключевым транзистором. В этом случае падение напряжения определяется сопротивлением открытого канала и при небольших токах нагрузки дает дополнительный выигрыш. Стабилизаторы, использующие это схемотехническое решение, называются синхронными. Обратим внимание, что возможность работы от внешнего синхросигнала и термин «синхронный» не связаны никаким образом.
с малым входным напряжением
Учитывая тот факт, что в номенклатуре STMicroelectronics присутствует примерно 70 типов ИПСН с встроенным ключевым транзистором, имеет смысл систематизировать все многообразие. Если в качестве критерия взять такой параметр, как максимальное значение входного напряжения, то можно выделить четыре группы:
1. ИПСН с малым входным напряжением (6 В и менее);
2. ИПСН с входным напряжением 10…28 В;
3. ИПСН с входным напряжением 36…38 В;
4. ИПСН с высоким входным напряжением (46 В и выше).
Параметры стабилизаторов первой группы приведены в таблице 1.
Таблица 1. ИПСН с малым входным напряжением
Наименование
| Вых. ток, A
| Входное напряжение, В | Выходное напряжение, В | КПД, %
| Частота коммутации, кГц | Функции и флаги
| ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I OUT
| V IN
| V OUT
| h | F SW
| R DSON
| On/Off
| Sync. Pin
| Soft Start
| Pow Good
| |||
Макс
| Мин
| Макс
| Мин
| Макс
| Макс
| Тип
| ||||||
L6925D
| 0,8 | 2,7 | 5,5 | 0,6 | 5,5 | 95 | 600 | 240 | + | + | + | + |
L6926
| 0,8 | 2,0 | 5,5 | 0,6 | 5,5 | 95 | 600 | 240 | + | + | + | + |
L6928
| 0,8 | 2,0 | 5,5 | 0,6 | 5,5 | 95 | 1450 | 240 | + | + | + | + |
PM8903A
| 3,0 | 2,8 | 6,0 | 0,6 | 6,0 | 96 | 1100 | 35 | + | + | + | + |
ST1S06A
| 1,5 | 2,7 | 6,0 | 0,8 | 5,0 | 92 | 1500 | 150 | + | – | + | – |
ST1S09
| 2,0 | 4,5 | 5,5 | 0,8 | 5,0 | 95 | 1500 | 100 | * | – | + | + |
ST1S12
| 0,7 | 2,5 | 5,5 | 0,6 | 5,0 | 92 | 1700 | 250 | + | + | – | |
ST1S15
| 0,5 | 2,3 | 5,5 | Фикс. 1,82 и 2,8 В | 90 | 6000 | 350 | + | – | + | – | |
ST1S30
| 3,0 | 2,7 | 6,0 | 0,8 | 5,0 | 85 | 1500 | 100 | * | – | + | + |
ST1S31
| 3,0 | 2,8 | 5,5 | 0,8 | 5,5 | 95 | 1500 | 60 | + | – | + | – |
ST1S32
| 4,0 | 2,8 | 5,5 | 0,8 | 5,5 | 95 | 1500 | 60 | + | – | + | – |
* – функция присутствует не для всех исполнений. |
Еще в 2005 году линейка стабилизаторов этого типа была неполной. Она ограничивалась микросхемами . Эти микросхемы обладали хорошими характеристиками: высокой точностью и КПД, отсутствием ограничений на значение коэффициента заполнения, возможностью регулировки частоты при работе от внешнего синхросигнала, приемлемым значением R DSON . Все это делает данные изделия востребованными и в настоящее время. Существенный недостаток — невысокие значения максимального выходного тока. Стабилизаторы на токи нагрузки от 1 А и выше в линейке низковольтных ИПСН компании STMicroelectronics отсутствовали. В дальнейшем этот пробел был ликвидирован: сначала появились стабилизаторы на 1,5 и 2 А ( и ), а в последние годы — на 3 и 4 А ( ,
и ). Кроме повышения выходного тока, увеличилась частота коммутации, снизилось значение сопротивления открытого канала, что положительно сказалось на потребительских свойствах конечных изделий. Отметим также появление микросхем ИПСН с фиксированным выходным напряжением ( и ) — в линейке STMicroelectronics таких изделий не очень много. Последняя новинка — со значением RDSON в 35 мОм — это один из лучших показателей в отрасли, что в сочетании с широкими функциональными возможностями обещает этому изделию хорошие перспективы.
Основная область применения изделий данного типа — мобильные устройства с батарейным питанием. Широкий диапазон входного напряжения обеспечивает устойчивую работу аппаратуры при различных уровнях заряда аккумуляторной батареи, а высокий КПД минимизирует преобразование входной энергии в тепло. Последнее обстоятельство определяет преимущества импульсных стабилизаторов по сравнению с линейными именно в этой области пользовательских приложений.
В целом, данная группа у компании STMicroelectronics развивается достаточно динамично — примерно половина всей линейки появилась на рынке в последние 3-4 года.
Импульсные понижающие стабилизаторы
с входным напряжением 10…28 В
Параметры преобразователей этой группы приведены в таблице 2.
Таблица 2. ИПСН со входным напряжением 10…28 В
Наименование
| Вых. ток, A
| Входное напряжение, В | Выходное напряжение, В | КПД, %
| Частота коммутации, кГц | Сопротивление открытого канала, мОм | Функции и флаги
| |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I OUT
| V IN
| V OUT
| h | F SW
| R DSON
| On/Off
| Sync. Pin
| Soft Start
| Pow Good
| |||
Макс
| Мин
| Макс
| Мин
| Макс
| Макс
| Тип
| ||||||
L5980
| 0,7 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5981
| 1,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5983
| 1,5 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5985
| 2,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5986
| 2,5 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5987
| 3,0 | 2,9 | 18,0 | 0,6 | 18,0 | 93 | 250…1000 | 140 | + | + | + | – |
L5988D
| 4,0 | 2,9 | 18,0 | 0,6 | 18,0 | 95 | 400…1000 | 120 | + | + | + | – |
L5989D
| 4,0 | 2,9 | 18,0 | 0,6 | 18,0 | 95 | 400…1000 | 120 | + | – | + | + |
L7980
| 2,0 | 4,5 | 28,0 | 0,6 | 28,0 | 93 | 250…1000 | 160 | + | + | + | – |
L7981
| 3,0 | 4,5 | 28,0 | 0,6 | 28,0 | 93 | 250…1000 | 160 | + | + | + | – |
ST1CC40
| 2,0 | 3,0 | 18,0 | 0,1 | 18,0 | н.д. | 850 | 95 | + | – | + | – |
ST1S03
| 1,5 | 2,7 | 16,0 | 0,8 | 12,0 | 79 | 1500 | 280 | – | – | + | – |
ST1S10
| 3,0 | 2,7 | 18,0 | 0,8 | 16,0 | 95 | 900 | 120 | + | + | + | – |
ST1S40
| 3,0 | 4,0 | 18,0 | 0,8 | 18,0 | 95 | 850 | 95 | + | – | + | – |
ST1S41
| 4,0 | 4,0 | 18,0 | 0,8 | 18,0 | 95 | 850 | 95 | + | – | + | – |
ST763AC
| 0,5 | 3,3 | 11,0 | Фикс. 3,3 | 90 | 200 | 1000 | + | – | + | – |
Восемь лет назад данная группа была представлена только микросхемами ,
и с входным напряжением до 11 В. Диапазон от 16 до 28 В оставался не заполненным. Из всех перечисленных модификаций в настоящее время в линейке присутствует только ,
но параметры этого ИПСН современным требованиям соответствуют слабо. Можно считать, что за это время номенклатура рассматриваемой группы обновлена полностью.
В настоящее время база данной группы — микросхемы .
Данная линейка рассчитана на весь диапазон токов нагрузки от 0,7 до 4 А, обеспечивает полный комплект специальных функций, частота коммутации регулируется в достаточно широких пределах, отсутствуют ограничения на значение коэффициента заполнения, значения КПД и сопротивления открытого канала отвечают современным требованиям. Существенных минусов в данной серии два. Во-первых, отсутствует встроенный разрядный диод (кроме микросхем с суффиксом D). Точность регулирования выходного напряжения достаточно высока (2%), но наличие трех и более внешних элементов в цепи компенсации обратной связи нельзя отнести к достоинствам. Микросхемы и отличаются от серии L598x только иным диапазоном входных напряжений, но схемотехника, а, следовательно, достоинства и недостатки аналогичны семейству L598x. В качестве примера на рисунке 5 представлена типовая схема включения трехамперной микросхемы . Присутствует и разрядный диод D, и элементы цепи компенсации R4, C4 и C5. Входы F SW и SYNCH остаются свободными, следовательно, преобразователь работает от внутреннего генератора с частотой F SW , заданной по умолчанию.
Данный обзор посвящён модулю импульсного стабилизатора, который предлагается интернет-магазинами под названием “5A Lithium Charger CV CC Buck Step Down Power Module LED Driver “. Таким образом модуль представляет собой импульсный понижающий преобразователь, предназначенный для зарядки литий-ионных аккумуляторов в режимах CV (постоянное напряжение) и СС (постоянный ток), а также для питания светодиодов. Стоит данное устройство около 2-х USD. Конструктивно модуль представляет собой печатную плату, на которой установлены все элементы, включая сигнальные светодиоды и органы регулировки. Внешний вид модуля представлен на рис.1.
Чертёж печатной платы представлен на рис. 2.
Согласно спецификации изготовителя модуль имеет следующие технические характеристики:
- Входное напряжение 6-38 В постоянного тока.
- Выходное напряжение регулируемое 1.25-36 В постоянного тока.
- Выходной ток 0-5 А (регулируемый).
- Мощность в нагрузке до 75 ВА.
- КПД более 96%.
- Имеется встроенная защита от перегрева и короткого замыкания в нагрузке.
- Размеры модуля 61.7х26.2х15 мм.
- Масса 20 грамм.
Сочетание невысокой цены, малых размеров и высоких технических характеристик вызвало у автора интерес и желание экспериментально определить основные характеристики модуля.
Производитель не приводит схему электрическую принципиальную, по этому её пришлось рисовать самостоятельно. Результат этой работы представлен на рис. 3.
Основой устройства является микросхема DA2 XL4015, представляющая собой оригинальную китайскую разработку. Данная микросхема весьма похожа на популярную LM2596, но отличается улучшенными характеристиками. Видимо это достигается применением в качестве силового ключа мощного полевого транзистора. Описание этой микросхемы приведено в Л1. В данном устройстве микросхема включена в полном соответствии с рекомендациями изготовителя. Переменный резистор “CV” является регулятором выходного напряжения. Цепь регулируемого ограничения выходного тока выполнена на операционном усилителе DA3.1. Этот усилитель сравнивает падение напряжения на токоизмерительном резисторе R9 с регулируемым напряжением, снимаемым с переменного резистора “CC”. С помощью этого резистора можно задать желаемый уровень ограничения тока в нагрузке стабилизатора.
Если заданное значение тока будет превышено, то на выходе усилителя появится сигнал высокого уровня, красный светодиод HL2 откроется и напряжение на входе 2 микросхемы DA2 повысится, что приведёт к снижению напряжения и тока на выходе стабилизатора. Кроме того свечение HL2 будет сигнализировать о том, что модуль работает в режиме стабилизации тока (СС). Конденсатор С5 должен обеспечивать устойчивость узла регулирования тока.
На втором операционном усилителе DA3.2 собран сигнализатор снижения тока в нагрузке до значения менее 9% от заданного максимального тока. Если ток превышает указанное значение, то светится синий светодиод HL3, в противном случае светится зелёный светодиод HL1. При зарядке литий-ионных аккумуляторов снижение зарядного тока является одним из признаков окончания зарядки.
На микросхеме DA1 собран стабилизатор с выходным напряжением 5В. Это напряжение используется для питания операционного усилителя DA3, также оно используется для формирования опорного напряжения ограничителя тока и сигнализатора снижения тока.
Падение напряжения на токоизмерительном резисторе никак не компенсируется, по этому с ростом тока в нагрузке выходное напряжение стабилизатора снижается. Чтобы уменьшить данный недостаток величина токоизмерительного резистора выбрана достаточно маленькой (0.05 Ома). Из-за этого дрейф операционного усилителя DA3 может вызвать заметную нестабильность как уровня ограничения выходного тока так и уровня срабатывания сигнализатора.
Испытания модуля показали, что выходное сопротивление стабилизатора в режиме стабилизации напряжения (CV) практически полностью определяется токоизмерительным резистором и составляет около 0.06 Ома.
Коэффициент стабилизации напряжения около 400.
Для оценки тепловыделения на вход модуля было подано напряжение 12В. На выходе было установлено напряжение 5В при нагрузке сопротивлением 2.5 Ома (ток 2А). Через 30 минут микросхема DA2, дроссель L1 и диод VD1 нагрелись до 71, 64 и 48 градусов Цельсия соответственно.
Работа в режиме стабилизации тока в нагрузке (СС) сопровождалась переходом микросхемы DA2 в режим формирования пачек импульсов. Частота следования и длительность пачек изменялись в широких пределах в зависимости от величины тока. Эффект стабилизации тока при этом имел место, но пульсации на выходе модуля существенно возрастали. Кроме того работа устройства в режиме СС сопровождалась довольно громким писком, источником которого являлся дроссель L1.
Работа сигнализатора снижения тока нареканий не вызвала. Модуль успешно выдерживал короткое замыкание в нагрузке.
Таким образом модуль работоспособен как в режиме CV, так и в режиме СС, но при его использовании следует учитывать вышеописанные особенности.
Данный обзор написан по результатам исследования одного экземпляра устройства, что делает полученные результаты чисто ориентировочными.
По мнению автора описанный импульсный стабилизатор может быть с успехом использован, если требуется дешёвый, компактный источник питания с удовлетворительными характеристиками.
Список радиоэлементов
Обозначение | Тип | Номинал | Количество | Примечание | Магазин | Мой блокнот |
---|---|---|---|---|---|---|
DA1 | Линейный регулятор | LM317L | 1 | В блокнот | ||
DA2 | Микросхема | XL4015 | 1 | В блокнот | ||
DA3 | Операционный усилитель | LM358 | 1 | В блокнот | ||
VD1 | Диод Шоттки | SK54 | 1 | В блокнот | ||
HL1 | Светодиод | Зеленый | 1 | В блокнот | ||
HL2 | Светодиод | Красный | 1 | В блокнот | ||
HL3 | Светодиод | Синий | 1 | В блокнот | ||
С1, С6 | Электролитический конденсатор | 220 мкФ 50 В | 2 | В блокнот | ||
С2-С4, С7 | Конденсатор | 0.47 мкФ | 4 | В блокнот | ||
С5 | Конденсатор | 0.01 мкФ | 1 | В блокнот | ||
R1 | Резистор | 680 Ом | 1 | В блокнот | ||
R2 | Резистор | 220 Ом | 1 | В блокнот | ||
R3 | Резистор | 330 Ом | 1 | В блокнот | ||
R4 | Резистор | 18 кОм | 1 | В блокнот | ||
R7 | Резистор | 100 кОм | 1 | В блокнот | ||
R8 | Резистор | 10 кОм | 1 |