Допустимый esr конденсатора. Что такое ESR

Windows 7

Допустимый esr конденсатора. Что такое ESR

Какой главный параметр для оценки исправности конденсаторов? Конечно их ёмкость. Но по мере распространения импульсной высоковольтной техники, стало очевидно, что надо обратить внимание на ещё один параметр, от которого зависит надёжность и качество работы импульсных преобразователей – это эквивалентное последовательное сопротивление (ЭПС, по англ. ESR – equivalent series resistance
). Применение конденсаторов с увеличенным значением ЭПС приводит к росту пульсаций выходного напряжения по сравнению с расчётными значениями, и бстрому выходу их из строя из-за повышенного нагрева за счёт выделения тепла на ЭПС, нередки даже случаи закипания электролита, деформация корпуса, а также взрывы конденсаторов. Особая выраженность негативного влияния ЭПС именно в силовых импульсных преобразователях вызвана, работой на больших токах заряда-разряда, а также тем, что с ростом рабочей частоты ЭПС возрастает. Наличие ESR объясняется конструкцией оксидного конденсатора и обусловлена сопротивлением обкладок, сопротивлением выводов, переходным сопротивлением контактов между обкладками и выводами, а также потерями в материале диэлектрика. С течением времени ESR конденсатора возрастает, что совсем не хорошо.

ESR конденсаторов разных типов

Естественно, проконтролировать обычным Омметром эквивалентное последовательное сопротивление конденсатора невозможно – тут нужен специальный прибор. В интернете есть несколько простых конструкций ESR-метров , но при желании, можно собрать более точный и удобный измеритель на микроконтроллере. Например из журнала Радио 7-2010.


Схема измерителя ESR конденсаторов на

Attiny2313

Все необходимые файлы и прошивки – в архиве . После сборки и включения крутим регулятор контрастности до появления на экране LCD надписи в две строки. Если её нет – проверяем монтаж и правильность прошивки МК ATtiny2313. Если всё ОК – нажимаем кнопку “Калибровка” – в прошивку внесётся поправка на скорость срабатывания входной части измерителя. Далее понадобится несколько новых электролитических конденсаторов высокого качества ёмкостью 220…470 мкФ разных партий, лучше всего – на разные напряжения. Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100…470 ом (у меня получилось 300 ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит – ещё будет корректироваться; затем проверить и с другими конденсаторами.

Для настройки измерителя ESR нужна таблица с типовыми значениями этого параметра для разных конденсаторов. Эту табличку рекомендуется приклеить на корпус прибора под дисплеем.

В следующей табличке указаны максимальные значения эквивалентного последовательного сопротивления для электролитических конденсаторов. Если у измеряемого конденсатора оно будет выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя:

Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к указанным в таблице. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ.

Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ESR применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, нужно подбирая сопротивление R2 – уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов – уточнить показания ESR-метра. Причём, приоритет надо отдавать измерителю внутреннего сопротивления.

Теперь надо настроить измеритель ёмкости конденсаторов диапазона 0,1…150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3…6,8 кОм добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролитические, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%.

Когда собрал данный измеритель ESR – схема завелась сразу, понадобилась только калибровка. Этот измеритель много раз помогал при ремонте БП, так что устройство рекомендуется к сборке. Схему разработал – DesAlex

, собрал и испытал: sterc

.

Обсудить статью ИЗМЕРИТЕЛЬ ESR НА МИКРОКОНТРОЛЛЕРЕ

Наиболее слабым местом в любой радиосхеме являются электролитические конденсаторы, которые подвержены постоянному высыханию. И чем большие токи проходят через них – тем этот процесс быстрее. Обычным омметром определить плохой конденсатор не получится, поэтому необходим спецприбор – esr измеритель.

Схема электрическая esr измерителя конденсаторов

Печатные платы – рисунок

В типичной схеме, может быть 10 или даже 100 конденсаторов. Выпаивать каждый для тестирования очень утомительно и существует большой риск повреждения платы. Этот тестер использует низкое напряжение (250 мВ) высокой частоты (150 кГц), и он способен мерять ESR конденсаторов прямо в схеме. Напряжение выбрано достаточно низкими, чтобы другие окружающие радиоэлементы схемы не влияли на результаты замеров. А если вам случайно доведется испытать заряженный конденсатор – не беда. Этот измеритель выдерживает до 400В заряда на конденсаторе. Опыт показал, что ЭПС метр выявляет около 95% конденсаторов с потенциальными проблемами.

Особенности работы прибора

  • Тест электролитических конденсаторов > 1 мкФ.
  • Полярность не важна для тестирования.
  • Переносит заряд конденсаторов до 400В.
  • Низкий ток потребления от батареи – около 25 мА.
  • Легко читать данные аналогового измерителя.
  • Меряет ЭПС в диапазоне от 0-75 Ом по расширенной шкале с помощью омметра.

Будьте осторожны, если вы тестируете высоковольтные конденсаторы. Имейте в виду, что высоковольтные конденсаторы могут нести сильный заряд в течение нескольких дней, в зависимости от схемы.

Как использовать ESR метр

Включаете прибор. Убедитесь, что проверяемая схема находится не под напряжением. Разрядите конденсатор перед тестированием – ЭПС метр не делает этого автоматически. Замкните выводы конденсатора и удерживайте их так в течение нескольких секунд. С помощью вольтметра убедитесь, что конденсатор полностью разряжен. Вольтметр должен показывать нулевое значение. Прикоснитесь щупами ESR метра к конденсатору. Определите сопростивление ESR. Является ли значение ESR приемлемым узнаём путем сравнения измеренного ESR с эталонными данными. Посмотреть эту таблицу

В последнее время в радиолюбительской и профессиональной литературе очень много внимания уделяется таким устройствам как электролитические конденсаторы. И не удивительно, ведь частоты и мощности растут «на глазах», и на эти конденсаторы ложится огромная ответственность за работоспособность как отдельных узлов, так и схемы в целом.

Хочу сразу предупредить, что большинство узлов и схемных решений было почерпнуто из форумов и журналов, поэтому я никакого авторства со своей стороны не заявляю, напротив, хочу помочь начинающим ремонтникам определиться в бесконечных схемах и вариациях измерителей и пробников. Все предоставленные здесь схемы были не однократно собраны и проверены в работе, и сделаны соответствующие выводы по работе той или иной конструкции.

Итак, первая схема, ставшая чуть ли не классикой для начинающих ESR Метростроителей «Манфред» – так ее любезно называют форумчане, по имени ее созидателя, Манфреда Луденса ludens.cl/Electron/esr/esr.html

Её повторили сотни, а может и тысячи радиолюбителей, и остались в основном довольны результатом. Основное его достоинство, это последовательная схема измерения, благодаря чему, минимальному ESR соответствует максимальное напряжение на шунтовом резисторе R6, что, в свою очередь полезно сказывается на работе диодов детектора.

Эту схему я сам не повторял, но пришел к аналогичной путем проб и ошибок. Из недостатков можно отметить «гуляние» нуля от температуры, и зависимость шкалы от параметров диодов и ОУ. Повышенное напряжение питания, требуемое для работы прибора. Чувствительность прибора можно легко повысить, уменьшив резисторы R5 и R6 до 1-2 ома и, соответственно увеличив усиление ОУ, возможно придется его заменить на 2 более скоростных.

Мой первый пробник ЕПС, исправно работающий по сегодняшний день.

Схемы не сохранилось, да ее и можно сказать и не было, собрал со всего миру по нитке, то что меня устраивало схемотехнически, правда, за основу была взята такая вот схема из журнала радио:

Были произведены следующие изменения:

1. Питание от литиевого аккумулятора мобильника
2. исключен стабилизатор, так как пределы рабочих напряжений Литиевого Аккумулятора довольно узкие
3. трансформаторы TV1 TV2 шунтированы резисторами 10 и 100 Ом, для уменьшения выбросов при измерении малых ескостей
4. Выход 561лн2 был буферизирован 2мя комплементарными транзисторами.

В общем получился такой вот девайс:

После сборки и калибровки данного девайса были тут-же отремонтированы 5 цифровых телефонных аппаратов «Мередиан», которые уже лет 6 лежали в коробке с надписью «безнадежные». Все в отделе начали делать себе аналогичные пробнички:).

Для большей универсализации, мною были добавлены дополнительный функции:

1. приемник инфрокрасного излучения, для визуальной и слуховой проверки пультов ДУ, (очень востребованная функция для ремонтов телеков)
2. подсветка места касания щупами конденсаторов
3. «вибрик» от мобилки, помогает локализовать плохие пайки и микрофонный эффект в деталях.

Видео проверки пульта

А недавно на форуме «radiokot.ru» господин Simurg выложил статью посвященную аналогичному прибору. В нем он применил низковольтное питание, мостовую схему измерения, что позволило измерять конденсаторы со сверхнизким уровнем ESR.

Его коллега RL55 взяв схему Simurg за основу, предельно упростил приборчик, по его заявлениям не ухудшив параметры. Его схема выглядит вот так:

Прибор ниже, мне пришлось собирать на скорую руку, как говорится «по нужде». Был в гостях у родственников,так там телевизор сломался, никто не мог его отремонтировать. Вернее ремонтировать удавалось, но не более чем на неделю, все время горел транзистор строчной развертки, схемы телевизора не было. Тут вспомнил, что видел на форумах простенький пробничек, схему помнил наизусть, родственник тоже немного занимался радиолюбительством, аудио усилители «клепал», поэтому все детали быстро нашлись. Пару часов пыхтения паяльником, и родился вот такой приборчик:

Были в 5 минут локализованы и заменены 4 подсохших електролитика, которые мультиметром определялись как нормальные, выпито за успех некоторое количество благородного напитка. Телек после ремонта уже 4 года работает исправно.

Прибор этого типа стал как панацея в трудные минуты, когда нет с собою нормального тестера. Собирается быстро, производится ремонт, и напоследок торжественно дарится хозяину на память, и, «на случай чего». После такой церемонии душа платящего как правило раскрывается вдвое, а то и втрое шире:)

Захотелось чего-то синхронного, начал думать над схемой реализации, и вот в журнале «Радио 1 2011», как по мановению вошебнлй палочки опубликована статья, даже думать не пришлось. Решил проверить, что за зверь. Собрал, получилось вот так:

Особого восторга изделие не вызвало, работает практически как и все предыдущие, есть, конечно разница в показаниях в 1-2 деления, в определенных случаях. Может его показания и более достоверны, но пробник есть пробник, на качестве дефектации это почти никак не отражается. Тоже снабдил светодиодом, чтобы смотреть «куда суешь?».

В общем, для души и ремонтов делать можно. А для точных измерений надо поискать схему измерителя ESR посолиднее.

Ну, и на последок на сайте monitor.net, участник buratino выложил простейший проект, как из обычного дешевого цифрового мультиметра можно сделать пробник ESR. Проект так меня заинтриговал, что решил попробовать, и вот что у меня из этого вышло.

Корпус приспособил от маркера

ESR – оно же эквивалентное последовательное сопротивление – это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.


Реальные параметры конденсатора

где

r – это сопротивление диэлектрика и корпуса между обкладками конденсатора

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (чаще его называют ESL) – эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r
– сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С
– емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

Где “прячется” ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ – это удельное сопротивление проводника

l – длина проводника

S – площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок;-) Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?

Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:

где, Х С
– это сопротивление конденсатора, Ом

П –
постоянная и равняется приблизительно 3,14

F
– частота, измеряется в Герцах

С
– емкость, измеряется в Фарадах

Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется!
Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:

P=I 2 xR

где

I – это сила тока, в Амперах

R – сопротивление резистора ESR, в Омах

Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.

Догоняете о чем я вам толкую? 😉

Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться.
Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость!
Есть даже такой интересный параметр конденсатора, как ТКЕ
или Т
емпературный К
оэффициент Е
мкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже “плавает” емкость, то вслед за ней “плывет” и схема.

ESR электролитических конденсаторов

В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.

У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной (ну той, которая написана на самом конденсаторе)


Чаще всего они вспухают в импульсных блоках питания и на материнках, обычно рядом с процессором (там выше на них нагрузка, да и тепло от процессора, вероятно, свою роль играет). Один из характерных симптомов: техника (комп, монитор) начинает включаться всё хуже и хуже. Либо с паузой (до нескольких часов после включения в сеть), либо с -дцатой попытки.

Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) – то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту – очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).

Таблица ESR

Как я уже сказал, ESR в основном проверяют именно у электролитических конденсаторов, потому что они используются в импульсных блоках питания. Вот небольшая табличка для максимально допустимых значений ESR для новых электролитических конденсаторов в зависимости от их рабочего напряжения:

Как измерить ESR

Давайте замеряем некоторые наши китайские конденсаторы на ESR. Для этого берем наш многофункциональный универсальный R/L/C/Transistor-metr и проведем несколько замеров:

Первым в бой идет конденсатор на 22 мкФ х 25 Вольт:

Емкость близка к номиналу. ESR=1,9 Ом. Если посмотреть по табличке, то максимальный ESR=2,1 Ом. Наш конденсатор вполне укладывается в этот диапазон. Значит его можно использовать в высокочастотных цепях.

Следующий конденсатор 100 мкФ х 16 Вольт

ESR=0,49 Ом, смотрим табличку… 0,7 максимальный. Значит тоже все ОК. Можно тоже использовать в ВЧ цепях.

И возьмем конденсатор емкостью побольше 220 мкФ х 16 Вольт

Максимальный ESR для него 0,33 Ом. У нас же высветило 0,42 Ома. Такой конденсатор уже не пойдет в ВЧ часть радиоаппаратуры. А в простые схемки, где гуляют низкие частоты (НЧ) сгодится в самый раз! ;-).

Конденсаторы с низким ESR

В нашем бурно-развивающемся мире электроника все больше строится именно на ВЧ части. Импульсные блоки питания почти полностью одержали победу над громоздкими трансформаторными блоками питания. Это мы, радиолюбители, до сих пор пользуемся самопальными блоками питания, сделанные из трансформаторов, которые нашли на помойке .

Но раз почти вся техника уходит в ВЧ диапазон, то и разработчики радиокомпонентов тоже не спят. Они создают конденсаторы, у которых низкий ESR и называются такие конденсаторы LOW ESR
, что значит кондеры с низким ESR. На некоторых это пишут прямо на корпусе:

Отличительной чертой таких конденсаторов является то, что они вытянуты в длину. Также, по моим наблюдениям, на них чаще всего есть полоска золотого цвета:

Сейчас все чаще используют миниатюрные полимерные алюминиевые конденсаторы с низким ESR:

Где же их можно чаще всего увидеть? Конечно же, разобрав свой персональный компьютер. Можно найти их в блоке питания, а также на материнской плате компьютера.

На фото ниже мы видим материнскую плату компа, которая сплошь утыкана конденсаторами с LOW ESR, некоторые из них я отметил в красном прямоугольнике:

Самым маленьким ESR обладают керамические и SMD -керамические конденсаторы

Заключение

Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток;-). Не поленитесь также купить или собрать прибор . Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.

Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.

ESR – Equivalent Series Resistance – один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока.
В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется,
главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов конденсатора.
В русскоязычной аббревиатуре – Эквивалентное Последовательное Сопротивление – ЭПС.

Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом,
а так же толщиной слоя диэлектрика.

Поляризация – ограниченное смещение связанных зарядов диэлектрика в электрическом поле.

Рассматривать детально процессы всех видов поляризации здесь нет необходимости, но вкратце это можно пояснить следующим образом:
Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания,
обусловленные их переориентацией и смещением (поляризацией).
В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей,
активно участвуют в общем процессе перезаряда конденсатора. По сути уменьшается толщина реального диэлектрика.
В результате существенно повышается ёмкость конденсатора но, по причине инертности и внутреннего трения связанных частиц,
процессы сопровождаются выделением тепла и потерями энергии в токопроводящих слоях диэлектрика.
С увеличением частоты, диэлектрические потери пропорционально возрастают.

В результате угол сдвига фаз между током и напряжением составит не 90°, как в идеальном конденсаторе, а несколько меньше.
Тангенс угла δ
, составляющего эту разницу с 90°, называют тангенсом угла диэлектрических потерь.
Аналогичный сдвиг происходит в цепи при последовательном включении конденсатора и резистора.
В связи с этим для расчётов принято понятие последовательного эквивалентного сопротивления ESR,
в котором диэлектрические потери суммируются с активным сопротивлением обкладок, соединений и выводов, представляя собой по сути резистор, подключенный последовательно с конденсатором.

Тангенс угла потерь определится соотношением R/Xc
, как тригонометрическая функция отношения двух катетов треугольника сопротивлений,
показанного на рисунке выше.

В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита,
который используется в качестве составляющей одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Если сопротивление электролита в конденсаторе рассмотреть как проводник с поперечным сечением, равным площади одной из обкладок
и длиной проводника, приблизительно равной толщине пропитанной бумаги, можно предположить, что эта величина будет относительно малой.
В реальных конденсаторах она обычно соизмерима с сотыми долями Ома при 20°C.
Но, следует учитывать, что для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100 кГц,
когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина может составлять основные потери, но будет значительно уменьшаться по мере прогрева.
Величина диэлектрических потерь на таких частотах в электролитических конденсаторах фильтров ИИП обычно в несколько раз больше,
и лишь в самых лучших случаях может быть примерно равна и даже меньше потерь в электролите.

Сопротивление электролита существенно зависит от температуры по причине изменения степени его вязкости и подвижности ионов.

В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем существенно уменьшается сопротивление электролита,
тогда ESR конденсатора будет определяться, главным образом, его диэлектрическими потерями.
В случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится
более вязким, что значительно повышает его сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества
электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы в устройстве.
Обычно неисправные электролитические конденсаторы, в которых кипел электролит,
определяются визуально по вздувшемуся и разгерметизированному корпусу.

Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа,
номинала и максимального напряжения в зависимости от режимов.
Для фильтров преобразователей, работающих на частотах десятков или сотен килогерц, производители выпускают специальные конденсаторы с малым ESR
и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах.
Тип таких конденсаторов сопровождается пометкой в технической документации – Low impedance или Low ESR.

Для анализа состояния конденсатора применяются измерители и пробники ESR,
которые могут быть выполнены исходя из разных принципов измерений и требований к погрешностям.
Большая часть ESR-метров и пробников основана на принципе измерения импеданса.
Подробнее о способах измерения можно ознакомиться на страничке – измерение ESR .

Замечания и предложения принимаются и приветствуются!

Оцените статью
Добавить комментарий

5 × 2 =